30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

200 ¤ CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14<br />

TX.10<br />

15. f(x, y) =(x 2 + y 2 )e y2 −x 2 ⇒<br />

f x =(x 2 + y 2 )e y2 −x 2 (−2x)+2xe y2 −x 2 =2xe y2 −x 2 (1 − x 2 − y 2 ),<br />

f y =(x 2 + y 2 )e y2 −x 2 (2y)+2ye y2 −x 2 =2ye y2 −x 2 (1 + x 2 + y 2 ),<br />

<br />

f xx =2xe y2 −x 2 (−2x)+(1− x 2 − y 2 ) 2x −2xe y2 −x 2 +2e y2 −x 2 =2e y2 −x 2 ((1 − x 2 − y 2 )(1 − 2x 2 ) − 2x 2 ),<br />

f xy =2xe y2 −x 2 (−2y)+2x(2y)e y2 −x 2 (1 − x 2 − y 2 )=−4xye y2 −x 2 (x 2 + y 2 ),<br />

<br />

f yy =2ye y2 −x 2 (2y)+(1+x 2 + y 2 ) 2y 2ye y2 −x 2 +2e y2 −x 2 =2e y2 −x 2 ((1 + x 2 + y 2 )(1 + 2y 2 )+2y 2 ).<br />

f y =0implies y =0, and substituting into f x =0gives<br />

2xe −x2 (1 − x 2 )=0 ⇒ x =0or x = ±1. Thus the critical points are<br />

(0, 0) and (±1, 0). NowD(0, 0) = (2)(2) − 0 > 0 and f xx (0, 0) = 2 > 0,<br />

so f(0, 0) = 0 is a local minimum. D(±1, 0) = (−4e −1 )(4e −1 ) − 0 < 0<br />

so (±1, 0) are saddle points.<br />

17. f(x, y) =y 2 − 2y cos x ⇒ f x =2y sin x, f y =2y − 2cosx,<br />

f xx =2y cos x, f xy =2sinx, f yy =2.Thenf x =0implies y =0or<br />

sin x =0 ⇒ x =0, π,or2π for −1 ≤ x ≤ 7. Substituting y =0into<br />

f y =0gives cos x =0 ⇒ x = π or 3π , substituting x =0or x =2π<br />

2 2<br />

into f y =0gives y =1, and substituting x = π into f y =0gives y = −1.<br />

Thus the critical points are (0, 1), π<br />

2 , 0 , (π, −1), 3π<br />

2 , 0 ,and(2π, 1).<br />

D π<br />

2 , 0 = D 3π<br />

2 , 0 = −4 < 0 so π<br />

2 , 0 and 3π<br />

2 , 0 aresaddlepoints.D(0, 1) = D(π, −1) = D(2π, 1) = 4 > 0 and<br />

f xx (0, 1) = f xx (π, −1) = f xx (2π, 1) = 2 > 0,sof(0, 1) = f(π, −1) = f(2π, 1) = −1 are local minima.<br />

19. f(x, y) =x 2 +4y 2 − 4xy +2 ⇒ f x =2x − 4y, f y =8y − 4x, f xx =2, f xy = −4, f yy =8.Thenf x =0<br />

and f y =0each implies y = 1 x, so all points of the form x<br />

2 0 , 1 x 2 0<br />

are critical points and for each of these we have<br />

D x 0 , 1 x 2 0 = (2)(8) − (−4) 2 =0. The Second Derivatives Test gives no information, but<br />

f(x, y) =x 2 +4y 2 − 4xy +2=(x − 2y) 2 +2≥ 2 with equality if and only if y = 1 x. Thus f <br />

2<br />

x 0, 1 2 x0 =2are all local<br />

(and absolute) minima.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!