30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

31. T =<br />

SECTION 15.6 DIRECTIONAL TX.10 DERIVATIVES AND THE GRADIENT VECTOR ET SECTION 14.6 ¤ 195<br />

k<br />

<br />

x2 + y 2 + z and 120 = T (1, 2, 2) = k so k =360.<br />

2 3<br />

h1, −1, 1i<br />

(a) u = √ ,<br />

3<br />

<br />

D u T (1, 2, 2) = ∇T (1, 2, 2)·u = −360 x 2 + y 2 + z 2 <br />

−3/2<br />

hx, y, zi ·u = − 40 h1, 2, 2i· √3<br />

1<br />

h1, −1, 1i = − 40<br />

3<br />

(1,2,2)<br />

3 √ 3<br />

(b) From (a), ∇T = −360 x 2 + y 2 + z 2 −3/2 hx, y, zi,andsincehx, y, zi is the position vector of the point (x, y, z),the<br />

vector − hx, y, zi, and thus ∇T , always points toward the origin.<br />

33. ∇V (x, y, z) =h10x − 3y + yz, xz − 3x, xyi, ∇V (3, 4, 5) = h38, 6, 12i<br />

(a) D u V (3, 4, 5) = h38, 6, 12i·<br />

√<br />

1<br />

3<br />

h1, 1, −1i = √ 32<br />

3<br />

(b) ∇V (3, 4, 5) = h38, 6, 12i,orequivalently,h19, 3, 6i.<br />

(c) |∇V (3, 4, 5)| = √ 38 2 +6 2 +12 2 = √ 1624 = 2 √ 406<br />

35. A unit vector in the direction of −→<br />

AB is i and a unit vector in the direction of −→<br />

AC is j. ThusD −→<br />

AB<br />

f(1, 3) = f x(1, 3) = 3 and<br />

D −→<br />

AC<br />

f(1, 3) = f y (1, 3) = 26. Therefore ∇f(1, 3) = hf x (1, 3),f y (1, 3)i = h3, 26i, and by definition,<br />

D −→ f(1, 3) = ∇f · u where u is a unit vector in the direction of −→ <br />

AD, whichis<br />

5 , 12<br />

AD 13 13 . Therefore,<br />

D −→<br />

5<br />

f (1, 3) = h3, 26i· , 12<br />

AD 13 13 =3· 5<br />

12<br />

+26· = 327 .<br />

13 13 13<br />

∂(au + bv)<br />

37. (a) ∇(au + bv) =<br />

,<br />

∂x<br />

<br />

(b) ∇(uv) = v ∂u<br />

= a ∇u + b ∇v<br />

∂x + u ∂v<br />

∂x<br />

∂u<br />

u<br />

v<br />

(c) ∇ = ∂x − u ∂v<br />

∂x ,<br />

v v 2<br />

<br />

∂(au + bv)<br />

= a ∂u<br />

∂y<br />

∂x + b ∂v<br />

∂x<br />

∂u<br />

,a<br />

∂y + b ∂v ∂u<br />

= a<br />

∂y ∂x , ∂u ∂v<br />

+ b<br />

∂y ∂x , ∂v <br />

∂y<br />

∂u<br />

,v<br />

∂y + u ∂v ∂u<br />

= v<br />

∂y ∂x , ∂u ∂v<br />

+ u<br />

∂y ∂x , ∂v <br />

= v ∇u + u ∇v<br />

∂y<br />

v ∂u<br />

∂y − u ∂v<br />

<br />

∂u<br />

v<br />

∂y ∂x , ∂u <br />

∂y<br />

=<br />

v 2<br />

∂v<br />

− u<br />

<br />

<br />

∂(u<br />

(d) ∇u n n )<br />

=<br />

∂x , ∂(un )<br />

= nu n−1 ∂u ∂u<br />

∂y<br />

∂x ,nun−1 = nu n−1 ∇u<br />

∂y<br />

v 2<br />

∂x , ∂v<br />

∂y<br />

<br />

=<br />

v ∇u − u ∇v<br />

v 2<br />

39. Let F (x, y, z) =2(x − 2) 2 +(y − 1) 2 +(z − 3) 2 .Then2(x − 2) 2 +(y − 1) 2 +(z − 3) 2 =10isalevelsurfaceofF .<br />

F x(x, y, z) =4(x − 2) ⇒ F x(3, 3, 5) = 4, F y(x, y, z) =2(y − 1) ⇒ F y(3, 3, 5) = 4,and<br />

F z(x, y, z) =2(z − 3) ⇒ F z(3, 3, 5) = 4.<br />

(a) Equation 19 gives an equation of the tangent plane at (3, 3, 5) as 4(x − 3) + 4(y − 3) + 4(z − 5) = 0<br />

4x +4y +4z =44or equivalently x + y + z =11.<br />

(b) By Equation 20, the normal line has symmetric equations x − 3<br />

4<br />

= y − 3<br />

4<br />

= z − 5<br />

4<br />

or equivalently<br />

x − 3=y − 3=z − 5. Corresponding parametric equations are x =3+t, y =3+t, z =5+t.<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!