30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 15.5 THE CHAIN RULE ET SECTION 14.5 ¤ 191<br />

turn functions of time t. We are given that dx<br />

dt<br />

dA<br />

dt = ∂A dx<br />

∂x dt + ∂A dy<br />

∂y dt + ∂A dθ<br />

∂θ dt<br />

and θ = π/6 we have<br />

⇒<br />

0= 1 2 (30) sin π 6<br />

=3,<br />

dy<br />

dt<br />

= −2, and because A is constant,<br />

dA<br />

dt<br />

=0. By the Chain Rule,<br />

dA<br />

dt = 1 dx<br />

2<br />

y sin θ ·<br />

dt + 1 dy<br />

2<br />

x sin θ ·<br />

dt + 1 dθ<br />

2<br />

xy cos θ · .Whenx =20, y =30,<br />

dt<br />

<br />

(3) +<br />

1<br />

(20) <br />

2<br />

sin π 6 (−2) +<br />

1<br />

(20)(30) <br />

2<br />

cos π dθ<br />

6<br />

dt<br />

=45· 1<br />

2 − 20 · 1<br />

2 + 300 · √<br />

3<br />

2 · dθ<br />

dt = 25 2<br />

+150√ 3 dθ<br />

dt<br />

Solving for dθ dθ<br />

gives<br />

dt dt = −25/2<br />

150 √ 3 = − 1<br />

12 √ , so the angle between the sides is decreasing at a rate of<br />

3<br />

1/ 12 √ 3 ≈ 0.048 rad/s.<br />

45. (a)BytheChainRule, ∂z<br />

∂r = ∂z ∂z<br />

cos θ +<br />

∂x ∂y sin θ, ∂z<br />

∂θ = ∂z<br />

∂z<br />

(−r sin θ)+ r cos θ.<br />

∂x ∂y<br />

2 2 ∂z ∂z<br />

(b) = cos 2 θ +2 ∂z<br />

2<br />

∂z<br />

∂z<br />

∂r ∂x<br />

∂x ∂y cos θ sin θ + sin 2 θ,<br />

∂y<br />

2 2 ∂z ∂z<br />

= r 2 sin 2 θ − 2 ∂z ∂z<br />

∂θ ∂x<br />

∂x ∂y r2 cos θ sin θ +<br />

2 ∂z<br />

+ 1 <br />

2 2 <br />

2<br />

∂z ∂z ∂z<br />

= + (cos 2 θ +sin 2 θ)=<br />

∂r r 2 ∂θ ∂x ∂y<br />

47. Let u = x − y. Then ∂z<br />

∂x = dz ∂u<br />

du ∂x = dz<br />

du<br />

2 ∂z<br />

r 2 cos 2 θ.Thus<br />

∂y<br />

2 ∂z<br />

+<br />

∂x<br />

∂z<br />

and<br />

∂y = dz (−1). Thus∂z<br />

du ∂x + ∂z<br />

∂y =0.<br />

2 ∂z<br />

.<br />

∂y<br />

49. Let u = x + at, v = x − at. Thenz = f(u)+g(v),so∂z/∂u = f 0 (u) and ∂z/∂v = g 0 (v).<br />

51.<br />

Thus ∂z<br />

∂t = ∂z ∂u<br />

∂u ∂t + ∂z ∂v<br />

∂v ∂t = af 0 (u) − ag 0 (v) and<br />

∂ 2 z<br />

∂t 2<br />

= a ∂ df<br />

∂t [f 0 (u) − g 0 0 (u) ∂u<br />

(v)] = a<br />

du ∂t − dg0 (v)<br />

dv<br />

<br />

∂v<br />

= a 2 f 00 (u)+a 2 g 00 (v).<br />

∂t<br />

Similarly ∂z<br />

∂x = f 0 (u)+g 0 (v) and ∂2 z<br />

∂x = f 00 (u)+g 00 (v). Thus ∂2 z<br />

2 ∂t = ∂ 2 z<br />

2 a2<br />

∂x . 2<br />

∂z<br />

∂s = ∂z ∂z<br />

2s + 2r. Then<br />

∂x ∂y<br />

∂ 2 z<br />

∂r ∂s = ∂ ∂r<br />

∂z<br />

∂x 2s + ∂ ∂z<br />

∂r ∂y 2r<br />

= ∂2 z ∂x<br />

∂x 2 ∂r 2s + ∂ ∂z ∂y ∂z ∂<br />

2s +<br />

∂y ∂x ∂r ∂x ∂r 2s + ∂2 z ∂y<br />

∂y 2 ∂r 2r + ∂ ∂z ∂x ∂z<br />

2r +<br />

∂x ∂y ∂r ∂y 2<br />

=4rs ∂2 z<br />

∂x 2 +<br />

By the continuity of the partials,<br />

∂2 z<br />

∂y ∂x 4s2 +0+4rs ∂2 z<br />

∂y + 2<br />

∂2 z<br />

∂x∂y 4r2 +2 ∂z<br />

∂y<br />

∂ 2 z<br />

∂r∂s =4rs ∂2 z<br />

∂x 2 +4rs ∂2 z<br />

∂y 2 +(4r2 +4s 2 ) ∂2 z<br />

∂x∂y +2∂z ∂y .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!