30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 15.5 THE CHAIN RULE ET SECTION 14.5 ¤ 187<br />

37. TheareaoftherectangleisA = xy,and∆A ≈ dA is an estimate of the area of paint in the stripe. Here dA = ydx+ xdy,<br />

so with dx = dy = 3+3<br />

12 = 1 2 , ∆A ≈ dA = (100) 1<br />

2<br />

<br />

+ (200)<br />

1<br />

2<br />

<br />

= 150 ft 2 . Thus there are approximately 150 ft 2 of paint<br />

in the stripe.<br />

39. First we find ∂R implicitly by taking partial derivatives of both sides with respect to R 1 :<br />

∂R 1<br />

<br />

∂ 1<br />

= ∂ [(1/R 1)+(1/R 2 )+(1/R 3 )]<br />

⇒ −R −2 ∂R<br />

= −R −2<br />

1 ⇒ ∂R = R2<br />

.Thenbysymmetry,<br />

∂R 1 R<br />

∂R 1 ∂R 1 ∂R 1<br />

∂R<br />

= R2<br />

,<br />

∂R 2<br />

R 2 2<br />

∂R<br />

= R2<br />

.WhenR 1 =25, R 2 =40and R 3 =50,<br />

∂R 3<br />

R 2 3<br />

1<br />

R = 17<br />

200<br />

R 2 1<br />

⇔ R = 200<br />

17 Ω.<br />

Since the possible error for each R i is 0.5%, the maximum error of R is attained by setting ∆R i =0.005R i .So<br />

∆R ≈ dR = ∂R ∆R 1 + ∂R ∆R 2 + ∂R<br />

1<br />

∆R 3 =(0.005)R 2 + 1 + 1 <br />

=(0.005)R = 1 ≈ 0.059 Ω.<br />

17<br />

∂R 1 ∂R 2 ∂R 3 R 1 R 2 R 3 41. The errors in measurement are at most 2%,so<br />

∆w<br />

w ≤ 0.02 and ∆h<br />

h ≤ 0.02. The relative error in the calculated surface<br />

area is<br />

∆S<br />

S<br />

≈ dS S = 0.1091(0.425w0.425−1 )h 0.725 dw +0.1091w 0.425 (0.725h 0.725−1 ) dh<br />

=0.425 dw 0.1091w 0.425 h 0.725 w +0.725 dh h<br />

To estimate the maximum relative error, we use dw <br />

w = ∆w<br />

w =0.02 and dh <br />

h = ∆h<br />

h =0.02 ⇒<br />

dS<br />

S<br />

=0.425 (0.02) + 0.725 (0.02) = 0.023. Thus the maximum percentage error is approximately 2.3%.<br />

43. ∆z = f(a + ∆x, b + ∆y) − f(a, b) =(a + ∆x) 2 +(b + ∆y) 2 − (a 2 + b 2 )<br />

= a 2 +2a ∆x +(∆x) 2 + b 2 +2b ∆y +(∆y) 2 − a 2 − b 2 =2a ∆x +(∆x) 2 +2b ∆y +(∆y) 2<br />

But f x (a, b) =2a and f y (a, b) =2b and so ∆z = f x (a, b) ∆x + f y (a, b) ∆y + ∆x ∆x + ∆y ∆y,whichisDefinition 7<br />

with ε 1 = ∆x and ε 2 = ∆y. Hence f is differentiable.<br />

45. To show that f is continuous at (a, b) we need to show that lim f(x, y) =f(a, b) or<br />

(x,y)→(a,b)<br />

equivalently<br />

lim<br />

(∆x,∆y)→(0,0)<br />

f(a + ∆x, b + ∆y) =f(a, b). Sincef is differentiable at (a, b),<br />

f(a + ∆x, b + ∆y) − f(a, b) =∆z = f x (a, b) ∆x + f y (a, b) ∆y + ε 1 ∆x + ε 2 ∆y, where 1 and 2 → 0 as<br />

(∆x, ∆y) → (0, 0). Thusf(a + ∆x, b + ∆y) =f(a, b)+f x(a, b) ∆x + f y(a, b) ∆y + ε 1 ∆x + ε 2 ∆y. Taking the limit of<br />

both sides as (∆x, ∆y) → (0, 0) gives<br />

lim<br />

(∆x,∆y)→(0,0)<br />

f(a + ∆x, b + ∆y) =f(a, b). Thus f is continuous at (a, b).<br />

15.5 The Chain Rule ET 14.5<br />

1. z = x 2 + y 2 + xy, x =sint, y = e t ⇒ dz<br />

dt = ∂z dx<br />

∂x dt + ∂z dy<br />

=(2x + y)cost +(2y + x)et<br />

∂y dt<br />

3. z = 1+x 2 + y 2 , x =lnt, y =cost ⇒<br />

dz<br />

dt = ∂z dx<br />

∂x dt + ∂z dy<br />

∂y dt = 1 (1 + 2 x2 + y 2 ) −1/2 (2x) · 1<br />

t + 1 (1 + 2 x2 + y 2 ) −1/2 1<br />

x<br />

<br />

(2y)(− sin t) = <br />

1+x2 + y 2 t − y sin t

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!