30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 15.3 PARTIAL DERIVATIVES ET SECTION 14.3 ¤ 183<br />

83. By Exercise 82, PV = mRT ⇒ P = mRT<br />

V<br />

Since T = PV<br />

∂P<br />

,wehaveT<br />

mR ∂T<br />

∂P<br />

,so<br />

∂T = mR<br />

V<br />

∂V<br />

∂T = PV<br />

mR · mR<br />

V · mR<br />

P<br />

= mR.<br />

.Also,PV = mRT ⇒ V =<br />

mRT<br />

P<br />

and ∂V<br />

∂T = mR<br />

P .<br />

85.<br />

∂K<br />

∂m = 1 2 v2 ,<br />

∂K<br />

∂v = mv, ∂ 2 K<br />

∂v 2<br />

∂K<br />

= m. Thus<br />

∂m · ∂2 K<br />

∂v = 1 2 2 v2 m = K.<br />

87. f x (x, y) =x +4y ⇒ f xy (x, y) =4and f y (x, y) =3x − y ⇒ f yx (x, y) =3.Sincef xy and f yx are continuous<br />

everywhere but f xy(x, y) 6=f yx(x, y), Clairaut’s Theorem implies that such a function f(x, y) does not exist.<br />

89. By the geometry of partial derivatives, the slope of the tangent line is f x(1, 2). By implicit differentiation of<br />

4x 2 +2y 2 + z 2 =16,weget8x +2z (∂z/∂x) =0 ⇒ ∂z/∂x = −4x/z, sowhenx =1and z =2we have<br />

∂z/∂x = −2. Sotheslopeisf x (1, 2) = −2. Thus the tangent line is given by z − 2=−2(x − 1), y =2.Takingthe<br />

parameter to be t = x − 1, we can write parametric equations for this line: x =1+t, y =2, z =2− 2t.<br />

91. By Clairaut’s Theorem, f xyy =(f xy ) y<br />

=(f yx ) y<br />

= f yxy =(f y ) xy<br />

=(f y ) yx<br />

= f yyx .<br />

93. Let g(x) =f(x, 0) = x(x 2 ) −3/2 e 0 = x |x| −3 .Butweareusingthepoint(1, 0), sonear(1, 0), g(x) =x −2 .Then<br />

g 0 (x) =−2x −3 and g 0 (1) = −2,sousing(1)wehavef x (1, 0) = g 0 (1) = −2.<br />

95. (a) (b) For (x, y) 6= (0, 0),<br />

f x(x, y)= (3x2 y − y 3 )(x 2 + y 2 ) − (x 3 y − xy 3 )(2x)<br />

(x 2 + y 2 ) 2<br />

= x4 y +4x 2 y 3 − y 5<br />

(x 2 + y 2 ) 2<br />

andbysymmetryf y(x, y) = x5 − 4x 3 y 2 − xy 4<br />

(x 2 + y 2 ) 2 .<br />

f(h, 0) − f(0, 0) (0/h 2 ) − 0<br />

f(0,h) − f(0, 0)<br />

(c) f x (0, 0) = lim<br />

= lim<br />

=0and f y (0, 0) = lim<br />

=0.<br />

h→0 h<br />

h→0 h<br />

h→0 h<br />

(d) By (3), f xy (0, 0) = ∂f x<br />

∂y =lim f x (0,h) − f x (0, 0) (−h 5 − 0)/h 4<br />

= lim<br />

h→0 h<br />

h→0 h<br />

f yx(0, 0) = ∂f y<br />

∂x =lim f y(h, 0) − f y(0, 0) h 5 /h 4<br />

= lim =1.<br />

h→0 h<br />

h→0 h<br />

(e) For (x, y) 6= (0, 0), we use a CAS to compute<br />

f xy (x, y) = x6 +9x 4 y 2 − 9x 2 y 4 − y 6<br />

(x 2 + y 2 ) 3<br />

Now as (x, y) → (0, 0) along the x-axis, f xy(x, y) → 1 while as<br />

(x, y) → (0, 0) along the y-axis, f xy (x, y) →−1. Thus f xy isn’t<br />

continuous at (0, 0) and Clairaut’s Theorem doesn’t apply, so there is<br />

no contradiction. The graphs of f xy and f yx are identical except at the<br />

origin, where we observe the discontinuity.<br />

= −1 while by (2),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!