30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

182 ¤ CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14<br />

TX.10<br />

variables, so Definition 4 says that f xy (x, y) = ∂<br />

∂y [f f x(x, y + h) − f x(x, y)<br />

x(x, y)] = lim<br />

h→0 h<br />

f x(3, 2+h) − f x(3, 2)<br />

f xy(3, 2) = lim<br />

.<br />

h→0 h<br />

We can estimate this value using our previous work with h =0.2 and h = −0.2:<br />

f xy (3, 2) ≈ f x(3, 2.2) − f x (3, 2)<br />

0.2<br />

=<br />

16.8 − 12.2<br />

0.2<br />

=23, f xy (3, 2) ≈ f x(3, 1.8) − f x (3, 2)<br />

−0.2<br />

Averaging these values, we estimate f xy (3, 2) to be approximately 23.25.<br />

=<br />

⇒<br />

7.5 − 12.2<br />

−0.2<br />

71. u = e −α2 k 2t sin kx ⇒ u x = ke −α2 k 2t cos kx, u xx = −k 2 e −α2 k 2t sin kx,andu t = −α 2 k 2 e −α2 k 2t sin kx.<br />

Thus α 2 u xx = u t .<br />

73. u =<br />

1<br />

<br />

x2 + y 2 + z 2 ⇒ u x = − 1 2<br />

<br />

(x 2 + y 2 + z 2 ) −3/2 (2x) =−x(x 2 + y 2 + z 2 ) −3/2 and<br />

u xx = −(x 2 + y 2 + z 2 ) −3/2 − x − 3 2<br />

<br />

(x 2 + y 2 + z 2 ) −5/2 (2x) = 2x2 − y 2 − z 2<br />

(x 2 + y 2 + z 2 ) 5/2 .<br />

By symmetry, u yy = 2y2 − x 2 − z 2<br />

(x 2 + y 2 + z 2 ) 5/2 and u zz = 2z2 − x 2 − y 2<br />

(x 2 + y 2 + z 2 ) 5/2 .<br />

Thus u xx + u yy + u zz = 2x2 − y 2 − z 2 +2y 2 − x 2 − z 2 +2z 2 − x 2 − y 2<br />

(x 2 + y 2 + z 2 ) 5/2 =0.<br />

75. Let v = x + at, w = x − at. Thenu t = ∂[f(v)+g(w)]<br />

∂t<br />

u tt = ∂[af 0 (v) − ag 0 (w)]<br />

∂t<br />

=<br />

df (v) ∂v<br />

dv<br />

∂t + dg(w)<br />

dw<br />

=23.5.<br />

∂w<br />

∂t = af 0 (v) − ag 0 (w) and<br />

= a[af 00 (v)+ag 00 (w)] = a 2 [f 00 (v)+g 00 (w)]. Similarly, by using the Chain Rule we have<br />

u x = f 0 (v)+g 0 (w) and u xx = f 00 (v)+g 00 (w). Thus u tt = a 2 u xx .<br />

77. z =ln(e x + e y ) ⇒ ∂z<br />

∂x =<br />

∂ 2 z<br />

∂x 2 = ex (e x + e y ) − e x (e x )<br />

(e x + e y ) 2 =<br />

ex ∂z<br />

and<br />

e x + ey ∂y =<br />

∂ 2 z<br />

∂y = ey (e x + e y ) − e y (e y ) e x+y<br />

=<br />

2 (e x + e y ) 2 (e x + e y ) . Thus 2<br />

<br />

∂ 2 z ∂ 2 z ∂ 2 2<br />

∂x 2 ∂y − z<br />

=<br />

2 ∂x∂y<br />

ey ∂z<br />

,so<br />

e x + ey ∂x + ∂z<br />

∂y =<br />

ex<br />

e x + e y +<br />

ey<br />

e x + e y<br />

e x+y<br />

(e x + e y ) 2 , ∂ 2 z<br />

∂x∂y = 0 − ey (e x )<br />

(e x + e y ) 2 = − ex+y<br />

(e x + e y ) 2 , and<br />

e x+y<br />

(e x + e y ) 2 ·<br />

<br />

e x+y<br />

(e x + e y ) − 2<br />

= ex + e y<br />

e x + e y =1.<br />

2<br />

−<br />

ex+y<br />

= (ex+y ) 2<br />

(e x + e y ) 2 (e x + e y ) − (ex+y ) 2<br />

4 (e x + e y ) =0 4<br />

79. If we fix K = K 0 ,P(L, K 0 ) is a function of a single variable L,and dP<br />

dL = α P is a separable differential equation. Then<br />

L<br />

<br />

dP<br />

dP<br />

P = αdL L ⇒ P = α dL ⇒ ln |P | = α ln |L| + C (K0), whereC(K0) can depend on K0. Then<br />

L<br />

|P | = e α ln|L| + C(K 0) , and since P>0 and L>0,wehaveP = e α ln L e C(K 0) = e C(K 0) e ln Lα = C 1 (K 0 )L α where<br />

C 1(K 0)=e C(K 0) .<br />

81. By the Chain Rule, taking the partial derivative of both sides with respect to R 1 gives<br />

∂R −1<br />

∂R<br />

∂R<br />

∂R 1<br />

= ∂ [(1/R1)+(1/R2)+(1/R3)]<br />

∂R 1<br />

or −R −2 ∂R<br />

= −R −2 ∂R<br />

1 .Thus = R2<br />

.<br />

∂R 1 ∂R 1<br />

R 2 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!