30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 15.3 PARTIAL DERIVATIVES ET SECTION 14.3 ¤ 181<br />

59. u =ln x 2 + y 2 =ln(x 2 + y 2 ) 1/2 = 1 2 ln(x2 + y 2 ) ⇒ u x = 1 1<br />

2 x 2 + y · 2x = x<br />

2 x 2 + y , 2<br />

u xy = x(−1)(x 2 + y 2 ) −2 (2y) =−<br />

2xy<br />

(x 2 + y 2 ) and u 2 y = 1 1<br />

2 x 2 + y · 2y =<br />

2<br />

u yx = y(−1)(x 2 + y 2 ) −2 (2x) =−<br />

2xy<br />

(x 2 + y 2 ) 2 . Thus u xy = u yx .<br />

y<br />

x 2 + y 2 ,<br />

61. f(x, y) =3xy 4 + x 3 y 2 ⇒ f x =3y 4 +3x 2 y 2 , f xx =6xy 2 , f xxy =12xy and<br />

f y =12xy 3 +2x 3 y, f yy =36xy 2 +2x 3 , f yyy =72xy.<br />

63. f(x, y, z) =cos(4x +3y +2z) ⇒<br />

f x = − sin(4x +3y +2z)(4) = −4sin(4x +3y +2z), f xy = −4cos(4x +3y +2z)(3) = −12 cos(4x +3y +2z),<br />

f xyz = −12(− sin(4x +3y +2z))(2) = 24 sin(4x +3y +2z) and<br />

f y = − sin(4x +3y +2z)(3) = −3sin(4x +3y +2z),<br />

f yz = −3cos(4x +3y +2z)(2) = −6cos(4x +3y +2z), f yzz = −6(− sin(4x +3y +2z))(2) = 12 sin(4x +3y +2z).<br />

65. u = e rθ sin θ ⇒ ∂u<br />

∂θ = erθ cos θ +sinθ · e rθ (r) =e rθ (cos θ + r sin θ),<br />

∂ 2 u<br />

∂r ∂θ = erθ (sin θ)+(cosθ + r sin θ) e rθ (θ) =e rθ (sin θ + θ cos θ + rθ sin θ),<br />

∂ 3 u<br />

∂r 2 ∂θ = erθ (θ sin θ)+(sinθ + θ cos θ + rθ sin θ) · e rθ (θ) =θe rθ (2 sin θ + θ cos θ + rθ sin θ).<br />

67. w = x<br />

y +2z = x(y +2z)−1 ⇒ ∂w<br />

∂x =(y +2z)−1 ,<br />

∂ 2 w<br />

∂y ∂x = −(y +2z)−2 (1) = −(y +2z) −2 ,<br />

∂ 3 w<br />

∂z ∂y ∂x = −(−2)(y +2z)−3 (2) = 4(y +2z) −3 4<br />

=<br />

and ∂w<br />

(y +2z) 3 ∂y = x(−1)(y +2z)−2 (1) = −x(y +2z) −2 ,<br />

∂ 2 w<br />

∂x∂y = −(y +2z)−2 ,<br />

∂ 3 w<br />

∂x 2 ∂y =0.<br />

f(3 + h, 2) − f(3, 2)<br />

69. By Definition 4, f x (3, 2) = lim<br />

which we can approximate by considering h =0.5 and h = −0.5:<br />

h→0 h<br />

f x (3, 2) ≈<br />

f(3.5, 2) − f(3, 2)<br />

0.5<br />

=<br />

22.4 − 17.5<br />

0.5<br />

=9.8, f x (3, 2) ≈<br />

f(2.5, 2) − f(3, 2)<br />

−0.5<br />

=<br />

10.2 − 17.5<br />

−0.5<br />

=14.6. Averaging<br />

f(3 + h, 2.2) − f(3, 2.2)<br />

these values, we estimate f x (3, 2) to be approximately 12.2. Similarly, f x (3, 2.2) = lim<br />

which<br />

h→0 h<br />

we can approximate by considering h =0.5 and h = −0.5: f x(3, 2.2) ≈<br />

f x(3, 2.2) ≈<br />

f(2.5, 2.2) − f(3, 2.2)<br />

−0.5<br />

=<br />

9.3 − 15.9<br />

−0.5<br />

To estimate f xy(3, 2), wefirstneedanestimateforf x(3, 1.8):<br />

f x (3, 1.8) ≈<br />

f(3.5, 1.8) − f(3, 1.8)<br />

0.5<br />

=<br />

20.0 − 18.1<br />

0.5<br />

f(3.5, 2.2) − f(3, 2.2)<br />

0.5<br />

=<br />

26.1 − 15.9<br />

0.5<br />

=13.2. Averaging these values, we have f x(3, 2.2) ≈ 16.8.<br />

=3.8, f x (3, 1.8) ≈<br />

f(2.5, 1.8) − f(3, 1.8)<br />

−0.5<br />

=<br />

12.5 − 18.1<br />

−0.5<br />

Averaging these values, we get f x (3, 1.8) ≈ 7.5. Nowf xy (x, y) = ∂ ∂y [f x(x, y)] and f x (x, y) is itself a function of two<br />

=20.4,<br />

=11.2.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!