30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

PROBLEMS PLUS<br />

1. (a) r(t) =R cos ωt i + R sin ωt j ⇒ v = r 0 (t) =−ωR sin ωt i + ωR cos ωt j, sor = R(cos ωt i +sinωt j) and<br />

v = ωR(− sin ωt i +cosωt j). v · r = ωR 2 (− cos ωt sin ωt +sinωt cos ωt) =0,sov ⊥ r. Sincer points along a<br />

radius of the circle, and v ⊥ r, v is tangent to the circle. Because it is a velocity vector, v points in the direction of motion.<br />

(b) In (a), we wrote v in the form ωR u,whereu is the unit vector − sin ωt i +cosωt j. Clearly |v| = ωR |u| = ωR. At<br />

speed ωR, the particle completes one revolution, a distance 2πR,intimeT = 2πR<br />

ωR = 2π ω .<br />

(c) a = dv<br />

dt = −ω2 R cos ωt i − ω 2 R sin ωt j = −ω 2 R(cos ωt i +sinωt j),soa = −ω 2 r. This shows that a is proportional<br />

to r and points in the opposite direction (toward the origin). Also, |a| = ω 2 |r| = ω 2 R.<br />

(d) By Newton’s Second Law (see Section 14.4 [ET 13.4]), F = ma,so|F| = m |a| = mRω 2 = m (ωR)2<br />

R<br />

= m |v|2<br />

R .<br />

3. (a) The projectile reaches maximum height when 0= dy<br />

dt = d dt [(v 0 sin α)t − 1 2 gt2 ]=v 0 sin α − gt; thatis,when<br />

t = v <br />

0 sin α<br />

v0 sin α<br />

and y =(v 0 sin α)<br />

− 1 2<br />

g<br />

g 2 g v0 sin α<br />

= v2 0 sin 2 α<br />

. This is the maximum height attained when<br />

g<br />

2g<br />

the projectile is fired with an angle of elevation α. This maximum height is largest when α = π . In that case, sin α =1<br />

2<br />

and the maximum height is v2 0<br />

2g .<br />

<br />

(b) Let R = v0<br />

2 g. We are asked to consider the parabola x 2 +2Ry − R 2 =0which can be rewritten as y = − 1<br />

2R x2 + R 2 .<br />

The points on or inside this parabola are those for which −R ≤ x ≤ R and 0 ≤ y ≤ −1<br />

2R x2 + R 2 .<br />

fired at angle of elevation α, the points (x, y) along its path satisfy the relations x =(v 0 cos α) t and<br />

y =(v 0 sin α)t − 1 2 gt2 ,where0 ≤ t ≤ (2v 0 sin α)/g (as in Example 14.4.5 [ET 13.4.5]). Thus<br />

|x| ≤<br />

v0 cos α 2v0 sin α =<br />

g v2 0 <br />

g sin 2α ≤<br />

v2 0<br />

g = |R|. This shows that −R ≤ x ≤ R.<br />

For t in the specified range, we also have y = t v 0 sin α − 1 2 gt = 1 2 gt 2v0 sin α<br />

g<br />

<br />

− t ≥ 0 and<br />

When the projectile is<br />

x<br />

y =(v 0 sin α)<br />

v 0 cos α − g 2 x<br />

g<br />

1<br />

= (tan α) x −<br />

2 v 0 cos α<br />

2v0 2 cos2 α x2 = −<br />

2R cos 2 α x2 + (tan α) x. Thus<br />

−1<br />

y −<br />

2R x2 + R <br />

−1<br />

=<br />

2 2R cos 2 α x2 + 1<br />

2R x2 +(tanα) x − R 2<br />

<br />

= x2<br />

1 − 1 <br />

+ (tan α) x − R 2R cos 2 α<br />

2 = x2 (1 − sec 2 α)+2R (tan α) x − R 2<br />

2R<br />

= −(tan2 α) x 2 +2R (tan α) x − R 2<br />

2R<br />

=<br />

− [(tan α) x − R]2<br />

2R<br />

We have shown that every target that can be hit by the projectile lies on or inside the parabola y = − 1<br />

2R x2 + R 2 . 161<br />

≤ 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!