30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

SECTION 14.4 TX.10 MOTION IN SPACE: VELOCITY AND ACCELERATION ET SECTION 13.4 ¤ 155<br />

25. As in Example 5, r(t) =(v 0 cos 45 ◦ )t i + (v 0 sin 45 ◦ )t − 1 gt2 √ √<br />

j = 1 v0<br />

2 2 2 t i + v0 2 t − gt<br />

2<br />

j . Then the ball<br />

lands at t = v √ √<br />

0 2<br />

√<br />

s. Now since it lands 90 maway,90 = 1 v 0 2<br />

g<br />

2 v0 2 or v0 2 =90g and the initial velocity<br />

g<br />

is v 0 = √ 90g ≈ 30 m/s.<br />

27. Let α be the angle of elevation. Then v 0 = 150 m/s and from Example 5, the horizontal distance traveled by the projectile is<br />

d = v2 0 sin 2α<br />

. Thus 1502 sin 2α<br />

=800 ⇒ sin 2α = 800g<br />

g<br />

g<br />

150 ≈ 0.3484 ⇒ 2α ≈ 2 20.4◦ or 180 − 20.4 =159.6 ◦ .<br />

Two angles of elevation then are α ≈ 10.2 ◦ and α ≈ 79.8 ◦ .<br />

29. Place the catapult at the origin and assume the catapult is 100 meters from the city, so the city lies between (100, 0)<br />

and (600, 0). The initial speed is v 0 =80m/sandletθ be the angle the catapult is set at. As in Example 5, the trajectory of<br />

the catapulted rock is given by r (t) =(80cosθ)t i + (80 sin θ)t − 4.9t 2 j. The top of the near city wall is at (100, 15),<br />

which the rock will hit when (80 cos θ) t =100 ⇒ t = 5<br />

4cosθ and (80 sin θ)t − 4.9t2 =15<br />

⇒<br />

80 sin θ ·<br />

2<br />

5<br />

5<br />

4cosθ − 4.9 =15 ⇒ 100 tan θ − 7.65625 sec 2 θ =15. Replacing sec 2 θ with tan 2 θ +1gives<br />

4cosθ<br />

7.65625 tan 2 θ − 100 tan θ +22.62625 = 0. Using the quadratic formula, we have tan θ ≈ 0.230324, 12.8309 ⇒<br />

θ ≈ 13.0 ◦ , 85.5 ◦ .Sofor13.0 ◦

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!