30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

152 ¤ CHAPTER 14 VECTOR FUNCTIONS ET CHAPTER 13<br />

TX.10<br />

55. (a) r 0 = s 0 T ⇒ r 00 = s 00 T + s 0 T 0 = s 00 T + s 0 dT<br />

ds s0 = s 00 T + κ(s 0 ) 2 N by the first Serret-Frenet formula.<br />

(b) Using part (a), we have<br />

r 0 × r 00 =(s 0 T) × [s 00 T + κ(s 0 ) 2 N]<br />

(c) Using part (a), we have<br />

=[(s 0 T) × (s 00 T)] + (s 0 T) × (κ(s 0 ) 2 N) (by Property 3 of Theorem 13.4.8 [ ET 12.4.8])<br />

=(s 0 s 00 )(T × T)+κ(s 0 ) 3 (T × N) =0 + κ(s 0 ) 3 B = κ(s 0 ) 3 B<br />

r 000 =[s 00 T + κ(s 0 ) 2 N] 0 = s 000 T + s 00 T 0 + κ 0 (s 0 ) 2 N +2κs 0 s 00 N + κ(s 0 ) 2 N 0<br />

= s 000 T + s 00 dT<br />

ds s0 + κ 0 (s 0 ) 2 N +2κs 0 s 00 N + κ(s 0 ) 2 dN<br />

ds s0<br />

= s 000 T + s 00 s 0 κ N + κ 0 (s 0 ) 2 N +2κs 0 s 00 N + κ(s 0 ) 3 (−κ T + τ B) [by the second formula]<br />

=[s 000 − κ 2 (s 0 ) 3 ] T +[3κs 0 s 00 + κ 0 (s 0 ) 2 ] N + κτ(s 0 ) 3 B<br />

(d) Using parts (b) and (c) and the facts that B · T =0, B · N =0,andB · B =1,weget<br />

(r 0 × r 00 ) · r 000<br />

|r 0 × r 00 | 2 = κ(s0 ) 3 B · [s 000 − κ 2 (s 0 ) 3 ] T +[3κs 0 s 00 + κ 0 (s 0 ) 2 ] N + κτ(s 0 ) 3 B <br />

|κ(s 0 ) 3 B| 2 = κ(s0 ) 3 κτ(s 0 ) 3<br />

[κ(s 0 ) 3 ] 2 = τ.<br />

57. r = t, 1 2 t2 , 1 t3 ⇒ r 0 3<br />

= 1,t,t 2 , r 00 = h0, 1, 2ti, r 000 = h0, 0, 2i ⇒ r 0 × r 00 = t 2 , −2t, 1 ⇒<br />

<br />

τ = (r0 × r 00 ) · r 000 t 2 , −2t, 1 ·h0, 0, 2i 2<br />

|r 0 × r 00 | 2 =<br />

=<br />

t 4 +4t 2 +1 t 4 +4t 2 +1<br />

59. For one helix, the vector equation is r(t) =h10 cos t, 10 sin t, 34t/(2π)i (measuring in angstroms), because the radius of each<br />

helix is 10 angstroms, and z increases by 34 angstroms for each increase of 2π in t. Using the arc length formula, letting t go<br />

from 0 to 2.9 × 10 8 × 2π,wefind the approximate length of each helix to be<br />

L = 2.9×10 8 ×2π<br />

|r 0 (t)| dt = <br />

2.9×10 8 ×2π<br />

(−10 sin t)<br />

0 0<br />

2 +(10cost) 2 + <br />

<br />

34 2<br />

2π<br />

dt = 100 + <br />

2.9×10<br />

8 ×2π<br />

34 2<br />

2π<br />

<br />

=2.9 × 10 8 × 2π 100 + <br />

34 2<br />

≈ 2.07 × 10 10 Å — more than two meters!<br />

2π<br />

14.4 Motion in Space: Velocity and Acceleration ET 13.4<br />

1. (a) If r(t) =x(t) i + y (t) j + z(t) k is the position vector of the particle at time t, then the average velocity over the time<br />

interval [0, 1] is<br />

v ave =<br />

r(1) − r(0)<br />

1 − 0<br />

intervals we have<br />

=<br />

[0.5, 1] : v ave =<br />

[1, 2] : v ave =<br />

[1, 1.5] : v ave =<br />

(4.5 i +6.0 j +3.0 k) − (2.7 i +9.8 j +3.7 k)<br />

1<br />

r(1) − r(0.5)<br />

1 − 0.5<br />

r(2) − r(1)<br />

2 − 1<br />

r(1.5) − r(1)<br />

1.5 − 1<br />

=<br />

=<br />

=<br />

(4.5 i +6.0 j +3.0 k) − (3.5 i +7.2 j +3.3 k)<br />

0.5<br />

(7.3 i +7.8 j +2.7 k) − (4.5 i +6.0 j +3.0 k)<br />

1<br />

(5.9 i +6.4 j +2.8 k) − (4.5 i +6.0 j +3.0 k)<br />

0.5<br />

=1.8 i − 3.8 j − 0.7 k. Similarly, over the other<br />

=2.0 i − 2.4 j − 0.6 k<br />

=2.8 i +1.8 j − 0.3 k<br />

=2.8 i +0.8 j − 0.4 k

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!