30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10 SECTION 14.3 ARCLENGTHANDCURVATURE ET SECTION 13.3 ¤ 149<br />

21. r(t) =t 2 i + t k ⇒ r 0 (t) =2t i + k, r 00 (t) =2i, |r 0 (t)| = (2t) 2 +0 2 +1 2 = √ 4t 2 +1, r 0 (t) × r 00 (t) =2j,<br />

|r 0 (t) × r 00 (t)| =2.Thenκ(t) = |r0 (t) × r 00 (t)| 2<br />

|r 0 (t)| 3 = √<br />

4t2 +1 3 = 2<br />

(4t 2 +1) . 3/2<br />

23. r(t) =3t i +4sint j +4cost k ⇒ r 0 (t) =3i +4cost j − 4sint k, r 00 (t) =−4sint j − 4cost k,<br />

|r 0 (t)| = 9+16cos 2 t +16sin 2 t = √ 9+16=5, r 0 (t) × r 00 (t) =−16 i +12cost j − 12 sin t k,<br />

|r 0 (t) × r 00 (t)| = 256 + 144 cos 2 t +144sin 2 t = √ 400 = 20. Thenκ(t) = |r0 (t) × r 00 (t)|<br />

|r 0 (t)| 3 = 20<br />

5 3 = 4 25 .<br />

25. r(t) = t, t 2 ,t 3 ⇒ r 0 (t) = 1, 2t, 3t 2 . The point (1, 1, 1) corresponds to t =1,andr 0 (1) = h1, 2, 3i ⇒<br />

|r 0 (1)| = √ 1+4+9= √ 14. r 00 (t) =h0, 2, 6ti ⇒ r 00 (1) = h0, 2, 6i. r 0 (1) × r 00 (1) = h6, −6, 2i, so<br />

|r 0 (1) × r 00 (1)| = √ 36 + 36 + 4 = √ √<br />

76. Thenκ(1) = |r0 (1) × r 00 (1)| 76<br />

|r 0 (1)| 3 = √ 3 = 1 <br />

19<br />

14 7 14 .<br />

27. f(x) =2x − x 2 , f 0 (x) =2− 2x, f 00 (x) =−2,<br />

κ(x) =<br />

|f 00 (x)|<br />

[1 + (f 0 (x)) 2 ] 3/2 = |−2|<br />

[1 + (2 − 2x) 2 ] 3/2 = 2<br />

(4x 2 − 8x +5) 3/2<br />

29. f(x) =4x 5/2 , f 0 (x) =10x 3/2 , f 00 (x) =15x 1/2 ,<br />

15x<br />

|f 00 1/2<br />

(x)|<br />

κ(x) =<br />

[1 + (f 0 (x)) 2 ] = <br />

3/2 [1 + (10x 3/2 ) 2 ] = 15 √ x<br />

3/2 (1 + 100x 3 ) 3/2<br />

31. Since y 0 = y 00 = e x , the curvature is κ(x) =<br />

|y 00 (x)|<br />

[1 + (y 0 (x)) 2 ] = e x<br />

3/2 (1 + e 2x ) = 3/2 ex (1 + e 2x ) −3/2 .<br />

To find the maximum curvature, we first find the critical numbers of κ(x):<br />

κ 0 (x) =e x (1 + e 2x ) −3/2 + e x − 3 2<br />

<br />

(1 + e 2x ) −5/2 (2e 2x )=e x 1+e 2x − 3e 2x<br />

(1 + e 2x ) 5/2 = e x 1 − 2e 2x<br />

(1 + e 2x ) 5/2 .<br />

κ 0 (x) =0when 1 − 2e 2x =0,soe 2x = 1 or x = − 1 ln 2. Andsince1 − 2 2 2e2x > 0 for x− 1 ln 2, the maximum curvature is attained at the point − 1 ln 2 2 2,e(− ln 2)/2 = − 1 ln 2, √2<br />

1<br />

.<br />

2<br />

Since lim<br />

x→∞ ex (1 + e 2x ) −3/2 =0,κ(x) approaches 0 as x →∞.<br />

33. (a) C appears to be changing direction more quickly at P than Q, so we would expect the curvature to be greater at P .<br />

(b) First we sketch approximate osculating circles at P and Q. Usingthe<br />

axes scale as a guide, we measure the radius of the osculating circle<br />

at P to be approximately 0.8 units, thus ρ = 1 κ<br />

⇒<br />

κ = 1 ρ ≈ 1 ≈ 1.3. Similarly, we estimate the radius of the<br />

0.8<br />

osculating circle at Q to be 1.4 units, so κ = 1 ρ ≈ 1<br />

1.4 ≈ 0.7.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!