30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

CHAPTER 11 PROBLEMS PLUS ¤ 513<br />

<br />

19. Let f(x) = ∞ c m x m and g(x) =e f(x) <br />

= ∞ d n x n .Theng 0 <br />

(x) = ∞ nd n x n−1 ,sond n occurs as the coefficient<br />

m=0<br />

n=0<br />

of x n−1 .Butalso<br />

∞<br />

<br />

g 0 (x) =e f(x) f 0 <br />

∞<br />

<br />

(x) = d n x n <br />

mc m x m−1<br />

n=0<br />

m=1<br />

= d 0 + d 1x + d 2x 2 + ···+ d n−1x n−1 + ··· c 1 +2c 2x +3c 3x 2 + ···+ nc nx n−1 + ···<br />

so the coefficient of x n−1 <br />

is c 1d n−1 +2c 2d n−2 +3c 3d n−3 + ···+ nc nd 0 = n <br />

ic id n−i. Therefore, nd n = n ic id n−i.<br />

21. Call the series S. We group the terms according to the number of digits in their denominators:<br />

S = 1<br />

+ 1 + ···+ 1 + <br />

1 + 1<br />

1 2 8 9<br />

<br />

+ ···+ <br />

1 + 1<br />

11 99<br />

<br />

+ ···+ <br />

1 + ···<br />

111 999<br />

<br />

g 1 g 2 g 3<br />

Now in the group g n ,sincewehave9 choices for each of the n digits in the denominator, there are 9 n terms.<br />

Furthermore, each term in g n is less than<br />

Now ∞ <br />

n=1<br />

<br />

S = ∞ <br />

g n < ∞<br />

n=1<br />

n=0<br />

1<br />

[except for the first term in g<br />

10 n−1 1 ]. So g n < 9 n 1 · =9 <br />

9 n−1<br />

.<br />

10 n−1 10<br />

9 <br />

9 n−1<br />

is a geometric series with a =9and r = 9 < 1. Therefore, by the Comparison Test,<br />

10<br />

10<br />

n=1<br />

9 9<br />

10<br />

n−1<br />

=<br />

9<br />

=90.<br />

1 − 9/10<br />

i=1<br />

i=1<br />

23. u =1+ x3<br />

3! + x6<br />

6! + x9<br />

x4<br />

+ ···, v = x +<br />

9! 4! + x7<br />

7! + x10<br />

x2<br />

+ ···, w =<br />

10! 2! + x5<br />

5! + x8<br />

8! + ···.<br />

Use the Ratio Test to show that the series for u, v, andw have positive radii of convergence (∞ in each case), so<br />

Theorem 11.9.2 applies, and hence, we may differentiate each of these series:<br />

du<br />

dx = 3x2 + 6x5 + 9x8 + ···= x2<br />

3! 6! 9! 2! + x5<br />

5! + x8<br />

8! + ···= w<br />

Similarly, dv<br />

dx =1+x3 3! + x6<br />

6! + x9<br />

dw<br />

+ ···= u,and<br />

9! dx = x + x4<br />

4! + x7<br />

7! + x10<br />

+ ···= v.<br />

10!<br />

So u 0 = w, v 0 = u,andw 0 = v. Now differentiate the left hand side of the desired equation:<br />

d<br />

dx (u3 + v 3 + w 3 − 3uvw) =3u 2 u 0 +3v 2 v 0 +3w 2 w 0 − 3(u 0 vw + uv 0 w + uvw 0 )<br />

=3u 2 w +3v 2 u +3w 2 v − 3(vw 2 + u 2 w + uv 2 )=0 ⇒<br />

u 3 + v 3 + w 3 − 3uvw = C. Tofind the value of the constant C, weputx =0in the last equation and get<br />

1 3 +0 3 +0 3 − 3(1 · 0 · 0) = C ⇒ C =1,sou 3 + v 3 + w 3 − 3uvw =1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!