30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

512 ¤ CHAPTER 11 PROBLEMS PLUS<br />

TX.10<br />

(b) The total volume is<br />

π ∞<br />

0<br />

e −x/5 sin 2 xdx= ∞ <br />

n=1<br />

V n = 250π<br />

101<br />

∞<br />

[e −(n−1)π/5 − e −nπ/5 ]= 250π [telescoping sum].<br />

101<br />

n=1<br />

Another method: If the volume in part (a) has been written as V n = 250π<br />

101 e−nπ/5 (e π/5 − 1), then we recognize ∞ <br />

as a geometric series with a = 250π<br />

101 (1 − e−π/5 ) and r = e −π/5 .<br />

15. If L is the length of a side of the equilateral triangle, then the area is A = 1 2 L · √3<br />

2 L = √ 3<br />

4 L2 and so L 2 = 4<br />

Let r be the radius of one of the circles. When there are n rows of circles, the figure shows that<br />

L = √ 3 r + r +(n − 2)(2r)+r + √ 3 r = r 2n − 2+2 √ 3 ,sor =<br />

The number of circles is 1+2+···+ n =<br />

A n =<br />

=<br />

n(n +1)<br />

πr 2 n(n +1)<br />

= π<br />

2<br />

2<br />

n(n +1)<br />

2<br />

A n<br />

A = n(n +1) π<br />

√ 2<br />

n + 3 − 1 2 √ 3<br />

=<br />

π<br />

L<br />

2 n + √ 3 − 1 .<br />

n(n +1)<br />

, and so the total area of the circles is<br />

2<br />

L 2<br />

4 n + √ 3 − 1 2<br />

4A/ √ 3<br />

4 n + √ 3 − 1 2 = n(n +1) πA<br />

√ 2<br />

n + 3 − 1 2 √ 3<br />

1+1/n π<br />

√ 2<br />

1+ 3 − 1 /n 2 √ 3 → π<br />

2 √ 3<br />

as n →∞<br />

⇒<br />

√<br />

3<br />

A.<br />

V n<br />

n=1<br />

17. As in Section 11.9 we have to integrate the function x x by integrating series. Writing x x =(e ln x ) x = e x ln x and using the<br />

Maclaurin series for e x ,wehavex x =(e ln x ) x = e x ln x <br />

= ∞ (x ln x) n <br />

= ∞ x n (ln x) n<br />

. As with power series, we can<br />

n!<br />

n!<br />

integrate this series term-by-term:<br />

1<br />

with u =(lnx) n , dv = x n dx,sodu =<br />

1<br />

0<br />

x n (ln x) n dx = lim<br />

0<br />

t→0 + 1<br />

t<br />

=0− n<br />

n +1<br />

x x dx = ∞ <br />

n=0<br />

n(ln x)n−1<br />

x<br />

1<br />

0<br />

n=0<br />

x n (ln x) n <br />

dx = ∞<br />

n!<br />

dx and v = xn+1<br />

n +1 :<br />

n=0<br />

n=0<br />

1<br />

1<br />

n!<br />

x<br />

x n (ln x) n n+1<br />

1<br />

dx = lim<br />

t→0 + n +1 (ln x)n t<br />

1<br />

0<br />

x n (ln x) n−1 dx<br />

0<br />

x n (ln x) n dx. We integrate by parts<br />

1<br />

− lim<br />

t→0 + t<br />

(where l’Hospital’s Rule was used to help evaluate the first limit). Further integration by parts gives<br />

1<br />

0<br />

1<br />

0<br />

1<br />

0<br />

x n (ln x) k dx = −<br />

k<br />

n +1<br />

1<br />

x n (ln x) n dx = (−1)n n!<br />

(n +1) n 1<br />

x x dx = ∞ <br />

n=0<br />

1<br />

n!<br />

1<br />

0<br />

0<br />

0<br />

x n (ln x) k−1 dx and, combining these steps, we get<br />

x n (ln x) n dx = ∞ <br />

x n dx = (−1)n n!<br />

(n +1) n+1 ⇒<br />

n=0<br />

1 (−1) n n!<br />

n! (n +1) = ∞<br />

n+1<br />

n=0<br />

(−1) n<br />

(n +1) = ∞<br />

n+1<br />

n=1<br />

n<br />

n +1 xn (ln x) n−1 dx<br />

(−1) n−1<br />

n n .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!