30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

506 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES<br />

TX.10<br />

29.<br />

∞<br />

[tan −1 (n +1)− tan −1 n]= lim<br />

n=1<br />

31. 1 − e + e2<br />

2! − e3<br />

3! + e4<br />

4! − ···= ∞ <br />

n→∞ s n<br />

= lim<br />

n→∞ [(tan−1 2 − tan −1 1) + (tan −1 3 − tan −1 2) + ···+(tan −1 (n +1)− tan −1 n)]<br />

= lim<br />

n→∞ [tan−1 (n +1)− tan −1 1] = π 2 − π 4 = π 4<br />

n=0<br />

(−1) n e n<br />

n! = ∞ <br />

n=0<br />

(−e) n<br />

n!<br />

= e −e since e x = ∞ <br />

33. cosh x = 1 2 (ex + e −x )= 1 ∞<br />

<br />

x n<br />

2 n=0 n! + ∞ (−x) n<br />

n=0 n!<br />

= 1 1+x ···<br />

+ x2<br />

2<br />

2! + x3<br />

3! + x4<br />

4! + +<br />

1 ···<br />

− x + x2<br />

2! − x3<br />

3! + x4<br />

4! −<br />

= 1 2+2· ···<br />

x2 x4<br />

+2·<br />

2 2! 4! + =1+ 1 <br />

2 x2 + ∞ x 2n<br />

n=2 (2n)! ≥ 1+ 1 2 x2 for all x<br />

35.<br />

37.<br />

∞<br />

n=1<br />

(−1) n+1<br />

n 5 =1− 1<br />

32 + 1<br />

243 − 1<br />

1024 + 1<br />

3125 − 1<br />

7776 + 1<br />

16,807 − 1<br />

32,768 + ···.<br />

Since b 8 = 1 8 5 = 1<br />

32,768 < 0.000031, ∞<br />

∞<br />

n=1<br />

1<br />

2+5 ≈ 8<br />

n<br />

R 8 = ∞ <br />

n=9<br />

n=1<br />

1<br />

2+5 < ∞<br />

n<br />

n=1<br />

(−1) n+1<br />

n 5 ≈ 7 <br />

n=1<br />

(−1) n+1<br />

n 5 ≈ 0.9721.<br />

1<br />

2+5 ≈ 0.18976224. To estimate the error, note that 1<br />

n<br />

n=9<br />

39. Use the Limit Comparison Test. lim<br />

n=0<br />

x n<br />

n!<br />

for all x.<br />

2+5 < 1 , so the remainder term is<br />

n 5n 1<br />

5 n = 1/59<br />

1 − 1/5 =6.4 × 10−7 geometric series with a = 1<br />

5 9 and r = 1 5<br />

<br />

.<br />

n→∞<br />

<br />

n +1<br />

n<br />

a n<br />

<br />

an<br />

<br />

n +1<br />

= lim = lim 1+ 1 <br />

=1> 0.<br />

n→∞ n n→∞ n<br />

Since |a n | is convergent, so is n +1 <br />

a n , by the Limit Comparison Test.<br />

n<br />

41. lim<br />

n→∞<br />

a n+1<br />

a n<br />

|x +2|<br />

n+1<br />

= lim<br />

n→∞ (n +1)4 · n+1<br />

<br />

n 4 n<br />

|x +2| n = lim<br />

n→∞<br />

n<br />

n +1<br />

|x +2| < 4 ⇔ −4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!