30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

CHAPTER 11 REVIEW ¤ 505<br />

11.<br />

n<br />

n 3 +1 < n n = 1 3 n ,so ∞<br />

2<br />

13. lim<br />

n→∞<br />

n=1<br />

n<br />

n 3 +1 converges by the Comparison Test with the convergent p-series ∞<br />

n=1<br />

1<br />

[ p =2> 1].<br />

n2 a <br />

n+1 (n +1)<br />

3<br />

<br />

= lim<br />

· 5n<br />

= lim 1+ 1 3<br />

· 1<br />

a n n→∞ 5 n+1 n 3 n→∞ n 5 = 1 5 < 1,so ∞ n 3<br />

n=1 5 convergesbytheRatioTest.<br />

n<br />

1<br />

15. Let f(x) =<br />

x √ .Thenf is continuous, positive, and decreasing on [2, ∞), so the Integral Test applies.<br />

ln x<br />

∞<br />

2<br />

so the series ∞ <br />

n=2<br />

t<br />

f(x) dx = lim<br />

t→∞<br />

2<br />

1<br />

<br />

x √ ln x dx u =lnx, du = 1 <br />

x dx<br />

<br />

= lim 2 √ ln t − 2 √ ln 2<br />

t→∞<br />

1<br />

n √ ln n diverges.<br />

<br />

= ∞,<br />

= lim<br />

t→∞<br />

ln t<br />

ln 2<br />

<br />

u −1/2 du = lim 2 √ ln t<br />

u<br />

t→∞ ln 2<br />

17. |a n | =<br />

cos 3n 1<br />

<br />

≤<br />

1+(1.2) n 1+(1.2) < 1 n 5 n (1.2) = <br />

,so ∞ |a n n | converges by comparison with the convergent geometric<br />

6 n=1<br />

<br />

series ∞ 5<br />

n <br />

6 r =<br />

5<br />

< 1 ∞<br />

6<br />

. It follows that a n converges (by Theorem 3 in Section 11.6).<br />

19. lim<br />

n→∞<br />

n=1<br />

a n+1<br />

a n<br />

n=1<br />

1 · 3 · 5 ·····(2n − 1)(2n +1)<br />

= lim<br />

·<br />

n→∞ 5 n+1 (n +1)!<br />

convergesbytheRatioTest.<br />

5 n n!<br />

1 · 3 · 5 ·····(2n − 1) = lim<br />

n→∞<br />

2n +1<br />

5(n +1) = 2 5 < 1,sotheseries<br />

√ √<br />

n<br />

21. b n = > 0, {bn} is decreasing, and lim<br />

n +1 n→∞ bn =0,sotheseries ∞ n<br />

(−1) n−1 converges by the Alternating<br />

n=1 n +1<br />

Series Test.<br />

23. Consider the series of absolute values:<br />

∞<br />

n −1/3 is a p-series with p = 1 ≤ 1 and is therefore divergent. But if we apply the<br />

3<br />

n=1<br />

Alternating Series Test, we see that b n = 3√ 1 > 0, {b n } is decreasing, and lim b <br />

n =0,sotheseries ∞ (−1) n−1 n −1/3<br />

n n→∞<br />

converges. Thus,<br />

∞<br />

(−1) n−1 n −1/3 is conditionally convergent.<br />

n=1<br />

25.<br />

a <br />

n+1 =<br />

a n<br />

(−1)n+1 (n +2)3 n+1 2 2n+1 <br />

·<br />

= n +2<br />

2 2n+3 (−1) n (n +1)3 n n +1 · 3<br />

4 = 1+(2/n)<br />

1+(1/n) · 3<br />

4 → 3 < 1 as n →∞,sobytheRatio<br />

4<br />

Test,<br />

∞<br />

n=1<br />

(−1) n (n +1)3 n<br />

2 2n+1 is absolutely convergent.<br />

n=1<br />

27.<br />

∞<br />

n=1<br />

(−3) n−1<br />

2 3n = ∞ <br />

n=1<br />

= 1 8 ·<br />

(−3) n−1<br />

(2 3 ) n = ∞ <br />

8<br />

11 = 1<br />

11<br />

n=1<br />

(−3) n−1<br />

8 n = 1 8<br />

∞<br />

n=1<br />

(−3) n−1<br />

8 n−1 = 1 8<br />

∞<br />

n=1<br />

<br />

− 3 n−1<br />

= 1 <br />

<br />

1<br />

8 8 1 − (−3/8)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!