30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 11.10 TAYLOR AND MACLAURIN SERIES ¤ 493<br />

41. e x (11)<br />

= ∞ <br />

n=0<br />

x n<br />

<br />

n! ,soe−x = ∞<br />

n=0<br />

(−x) n<br />

n!<br />

f(x)=xe −x <br />

= ∞ (−1) n 1<br />

n=0<br />

<br />

= ∞ (−1) n x n<br />

n! ,so<br />

n=0<br />

n! xn+1<br />

= x − x 2 + 1 2 x3 − 1 6 x4 + 1 24 x5 − 1<br />

120 x6 + ···<br />

<br />

= ∞ (−1) n−1 x n<br />

(n − 1)!<br />

n=1<br />

The series for e x converges for all x, so the same is true of the series<br />

for f(x);thatis,R = ∞. From the graphs of f and the first few Taylor<br />

polynomials, we see that T n(x) provides a closer fittof(x) near 0 as n increases.<br />

43. e x = ∞ <br />

n=0<br />

x n<br />

<br />

n! ,soe−0.2 = ∞<br />

n=0<br />

(−0.2) n<br />

n!<br />

=1− 0.2+ 1 2! (0.2)2 − 1 3! (0.2)3 + 1 4! (0.2)4 − 1 5! (0.2)5 + 1 6! (0.2)6 − ···.<br />

But 1 6! (0.2)6 =8.8 × 10 −8 , so by the Alternating Series Estimation Theorem, e −0.2 ≈<br />

5<br />

n=0<br />

(−0.2) n<br />

n!<br />

≈ 0.81873,correctto<br />

five decimal places.<br />

45. (a) 1/ √ 1 − x 2 = 1+ −x 2−1/2 =1+ <br />

− <br />

1<br />

2 −x<br />

2 −<br />

1<br />

2 −<br />

3<br />

<br />

2<br />

+<br />

−x<br />

2 2 +<br />

2!<br />

<br />

=1+ ∞ 1 · 3 · 5 ·····(2n − 1)<br />

x 2n<br />

2 n · n!<br />

<br />

(b) sin −1 x =<br />

= x + ∞ <br />

n=1<br />

1<br />

√ dx = C + x + ∞<br />

1 − x<br />

2<br />

n=1<br />

n=1<br />

1 · 3 · 5 ·····(2n − 1)<br />

x 2n+1<br />

(2n +1)2 n · n!<br />

1 · 3 · 5 ·····(2n − 1)<br />

x 2n+1<br />

(2n +1)2 n · n!<br />

since 0=sin −1 0=C.<br />

−<br />

1<br />

2<br />

−<br />

3<br />

2<br />

3!<br />

−<br />

5<br />

2<br />

<br />

<br />

−x<br />

2 3 + ···<br />

47. cos x (16) <br />

= ∞ (−1) n x 2n<br />

(2n)!<br />

n=0<br />

x cos(x 3 <br />

)= ∞ (−1) n x 6n+1<br />

(2n)!<br />

n=0<br />

⇒<br />

<br />

cos(x 3 )= ∞ (−1) n (x 3 ) 2n <br />

= ∞ (−1) n x 6n<br />

⇒<br />

n=0 (2n)! n=0 (2n)!<br />

<br />

⇒ x cos(x 3 <br />

) dx = C + ∞ (−1) n x 6n+2<br />

,withR = ∞.<br />

(6n + 2)(2n)!<br />

n=0<br />

49. cos x (16) <br />

= ∞ (−1) n x 2n<br />

(2n)!<br />

n=0<br />

⇒<br />

<br />

cos x − 1= ∞ (−1) n x 2n<br />

(2n)!<br />

n=1<br />

⇒ cos x − 1<br />

x<br />

<br />

= ∞ (−1) n x 2n−1<br />

(2n)!<br />

n=1<br />

⇒<br />

cos x − 1<br />

<br />

dx = C + ∞ (−1) n x 2n<br />

,withR = ∞.<br />

x<br />

2n · (2n)!<br />

<br />

51. By Exercise 47,<br />

1<br />

0<br />

n=1<br />

x cos(x 3 <br />

) dx = C + ∞ (−1) n x 6n+2<br />

(6n +2)(2n)! ,so<br />

n=0<br />

∞<br />

<br />

x cos(x 3 <br />

) dx = (−1) n x 6n+2 1<br />

<br />

= ∞ (−1) n<br />

n=0 (6n + 2)(2n)!<br />

0 n=0 (6n + 2)(2n)! = 1 2 − 1<br />

8 · 2! + 1<br />

14 · 4! − 1<br />

20 · 6! + ···,but<br />

1<br />

20 · 6! = 1<br />

14,400 ≈ 0.000 069, so 1<br />

Alternating Series Estimation Theorem.<br />

0<br />

x cos(x 3 ) dx ≈ 1 2 − 1 16 + 1 ≈ 0.440 (correct to three decimal places) by the<br />

336

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!