30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

492 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES TX.10<br />

<br />

1<br />

27.<br />

(2 + x) 3 = 1<br />

[2(1 + x/2)] 3 = 1 <br />

1+ x −3 1 ∞ −3 x<br />

n.<br />

= The binomial coefficient is<br />

8 2 8 n=0 n 2<br />

Thus,<br />

1<br />

(2 + x) 3 = 1 8<br />

<br />

−3<br />

=<br />

n<br />

∞<br />

n=0<br />

(−3)(−4)(−5) ·····(−3 − n +1)<br />

n!<br />

= (−1)n · 2 · 3 · 4 · 5 ·····(n +1)(n +2)<br />

2 · n!<br />

=<br />

(−3)(−4)(−5) ·····[−(n +2)]<br />

n!<br />

= (−1)n (n +1)(n +2)<br />

2<br />

(−1) n (n +1)(n +2) x n<br />

2 2 = ∞ (−1) n (n +1)(n +2)x n<br />

for<br />

n n=0 2 n+4<br />

x < 1 ⇔ |x| < 2,soR =2.<br />

2<br />

<br />

29. sin x = ∞ (−1) n x 2n+1<br />

(2n +1)!<br />

n=0<br />

⇒<br />

<br />

f(x) =sin(πx) = ∞ (−1) n (πx) 2n+1<br />

(2n +1)! = ∞ (−1) n π 2n+1<br />

(2n +1)! x2n+1 , R = ∞.<br />

n=0<br />

n=0<br />

31. e x = ∞ <br />

n=0<br />

R = ∞.<br />

x n<br />

n!<br />

⇒<br />

e 2x = ∞ <br />

n=0<br />

(2x) n<br />

n!<br />

= ∞ <br />

n=0<br />

2 n x n<br />

,sof(x) =e x + e 2x <br />

= ∞ 1 <br />

n!<br />

n=0 n! xn + ∞ 2 n <br />

n=0 n! xn = ∞ 2 n +1<br />

x n ,<br />

n=0 n!<br />

<br />

33. cos x = ∞ (−1) n x 2n<br />

(2n)!<br />

n=0<br />

⇒ cos <br />

1<br />

x2 <br />

= ∞ 1<br />

(−1) n x2 2n<br />

2<br />

2<br />

(2n)!<br />

n=0<br />

f(x) =x cos 1<br />

x2 <br />

= ∞ (−1) n 1<br />

2<br />

2 2n (2n)! x4n+1 , R = ∞.<br />

n=0<br />

<br />

= ∞ (−1) n<br />

n=0<br />

x 4n<br />

2 2n (2n)! ,so<br />

35. We must write the binomial in the form (1+ expression), so we’ll factor out a 4.<br />

x<br />

√ = x<br />

<br />

4+x<br />

2 4(1 + x2 /4) =<br />

x<br />

2 1+x 2 /4 = x 2<br />

<br />

= x 1+ <br />

<br />

− 1 x 2 −<br />

1<br />

2<br />

2<br />

4 + 2 −<br />

3 <br />

2 x<br />

2<br />

2<br />

+<br />

2! 4<br />

= x 2 + x 2<br />

∞<br />

(−1) n 1 · 3 · 5 ·····(2n − 1)<br />

2 n · 4 n · n!<br />

n=1<br />

−1/2 1+ x2<br />

= x 4 2<br />

x 2n<br />

−<br />

1<br />

2<br />

−<br />

3<br />

2<br />

3!<br />

−<br />

5<br />

2<br />

x<br />

∞ − 1 2<br />

2<br />

n 4<br />

n=0<br />

x<br />

2<br />

3<br />

+ ···<br />

= x 2 + ∞ (−1) n 1 · 3 · 5 ·····(2n − 1)<br />

x 2n+1 and x2<br />

n!2 3n+1 4 < 1 ⇔ |x| < 1 ⇔ |x| < 2, soR =2.<br />

2<br />

n=1<br />

37. sin 2 x = 1 2 (1 − cos 2x) =1 2<br />

R = ∞<br />

<br />

1 − ∞ <br />

n=0<br />

<br />

(−1) n (2x) 2n<br />

= 1 <br />

<br />

1 − 1 − ∞<br />

(2n)! 2<br />

n=1<br />

4<br />

n<br />

<br />

(−1) n (2x) 2n <br />

= ∞<br />

(2n)!<br />

n=1<br />

(−1) n+1 2 2n−1 x 2n<br />

,<br />

(2n)!<br />

<br />

39. cos x = ∞ (−1) n x 2n<br />

(2n)!<br />

n=0<br />

⇒<br />

f(x) =cos x 2 = ∞ <br />

n=0<br />

(−1) n x 2 2n<br />

(2n)!<br />

= ∞ <br />

n=0<br />

(−1) n x 4n<br />

, R = ∞<br />

(2n)!<br />

Notice that, as n increases, T n (x)<br />

becomes a better approximation to f(x).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!