30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 11.10 TAYLOR AND MACLAURIN SERIES ¤ 491<br />

19.<br />

n f (n) (x) f (n) (9)<br />

0 x −1/2 1 3<br />

1 − 1 2 x−3/2 − 1 · 1<br />

2 3 3<br />

3<br />

2<br />

4 x−5/2 − 1 · − 3<br />

2 2 · 1<br />

3 5<br />

3 − 15 8 x−7/2 − 1 · − 3<br />

2 2 · −<br />

5<br />

2 · 1<br />

3 7<br />

.<br />

.<br />

.<br />

<br />

lim<br />

n→∞ an+1<br />

a n<br />

1<br />

√ = 1 x 3 − 1<br />

3 (x − 9) 2<br />

(x − 9) +<br />

2 · 33 2 2 · 3 5 2!<br />

− 3 · 5 (x − 9) 3<br />

+ ···<br />

2 3 · 3 7 3!<br />

= 1 3 + ∞ <br />

n=1<br />

1 · 3 · 5 · ··· ·(2n − 1)[2(n +1)− 1] |x − 9|<br />

n+1<br />

= lim<br />

·<br />

n→∞<br />

2 n+1 · 3 [2(n+1)+1] · (n +1)!<br />

<br />

(2n +1)|x − 9|<br />

= lim<br />

= 1 |x − 9| < 1<br />

n→∞ 2 · 3 2 (n +1) 9<br />

(−1) n 1 · 3 · 5 · ··· ·(2n − 1)<br />

2 n · 3 2n+1 · n!<br />

(x − 9) n .<br />

<br />

2 n · 3 2n+1 · n!<br />

1 · 3 · 5 ·····(2n − 1) |x − 9| n<br />

for convergence, so |x − 9| < 9 and R =9.<br />

21. If f(x) =sinπx,thenf (n+1) (x) =±π n+1 sin πx or ±π n+1 <br />

cos πx. In each case, f (n+1) (x) ≤ π n+1 ,sobyFormula9<br />

with a =0and M = π n+1 , |R n (x)| ≤<br />

πn+1<br />

(n +1)! |x|n+1 = |πx|n+1<br />

(n +1)! . Thus, |R n(x)| → 0 as n →∞by Equation 10.<br />

So lim Rn(x) =0and, by Theorem 8, the series in Exercise 7 represents sin πx for all x.<br />

n→∞<br />

23. If f(x) =sinhx, thenforalln, f (n+1) (x) =coshx or sinh x. Since|sinh x| < |cosh x| =coshx for all x,wehave<br />

<br />

f (n+1) (x) ≤ cosh x for all n. Ifd is any positive number and |x| ≤ d, then<br />

Formula 9 with a =0and M =coshd,wehave|R n(x)| ≤<br />

<br />

f (n+1) (x) ≤ cosh x ≤ cosh d,soby<br />

cosh d<br />

(n +1)! |x|n+1 . It follows that |R n(x)| → 0 as n →∞for<br />

|x| ≤ d (by Equation 10). But d was an arbitrary positive number. So by Theorem 8, the series represents sinh x for all x.<br />

25. The general binomial series in (17) is<br />

<br />

(1 + x) k <br />

= ∞ k<br />

x n =1+kx +<br />

n<br />

n=0<br />

<br />

(1 + x) 1/2 <br />

= ∞ 1<br />

2<br />

n<br />

n=0<br />

k(k − 1)<br />

x 2 +<br />

2!<br />

x n =1+ 1<br />

2<br />

k(k − 1)(k − 2)<br />

x 3 + ···.<br />

3!<br />

<br />

1<br />

<br />

x +<br />

2 −<br />

1<br />

2<br />

x 2 +<br />

2!<br />

1<br />

<br />

2 −<br />

1<br />

2<br />

3!<br />

=1+ x 2 − x2<br />

2 2 · 2! + 1 · 3 · x3<br />

− 1 · 3 · 5 · x4<br />

+ ···<br />

2 3 · 3! 2 4 · 4!<br />

=1+ x 2 + ∞ <br />

n=2<br />

(−1) n−1 1 · 3 · 5 ·····(2n − 3)x n<br />

2 n · n!<br />

<br />

−<br />

3<br />

2<br />

x 3 + ···<br />

for |x| < 1, soR =1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!