30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

t<br />

23.<br />

1 − t = t · 1<br />

8 1 − t = t ∞ (t 8 ) n <br />

= ∞ 8<br />

n=0<br />

t 8n+1<br />

n=0<br />

SECTION TX.10 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES ¤ 487<br />

⇒<br />

<br />

t<br />

1 − t dt = C + ∞<br />

8<br />

n=0<br />

t 8n+2<br />

8n +2 . Theseriesfor 1<br />

1 − t 8 converges<br />

when t<br />

8 < 1 ⇔ |t| < 1,soR =1for that series and also the series for t/(1 − t 8 ). By Theorem 2, the series for<br />

<br />

t<br />

dt also has R =1.<br />

1 − t8 25. By Example 7, tan −1 <br />

x = ∞ (−1) n x 2n+1<br />

with R =1,so<br />

n=0 2n +1<br />

x − tan −1 x = x −<br />

x ···<br />

− x3<br />

3 + x5<br />

5 − x7<br />

7 + = x3<br />

3 − x5<br />

5 + x7<br />

7 − ··· = ∞ (−1) n+1 x 2n+1<br />

2n +1 and<br />

x − tan −1 x<br />

x 3 =<br />

∞<br />

(−1) n+1 x 2n−2<br />

2n +1 ,so<br />

n=1<br />

x − tan −1 x<br />

<br />

dx = C + ∞ (−1) n+1 x 2n−1<br />

x 3<br />

(2n +1)(2n − 1) = C + ∞ (−1) n+1 x 2n−1<br />

. By Theorem 2, R =1.<br />

4n 2 − 1<br />

n=1<br />

1<br />

27.<br />

1+x = 1<br />

5 1 − (−x 5 ) = ∞ −x<br />

5 n <br />

= ∞ (−1) n x 5n ⇒<br />

n=0<br />

n=0<br />

<br />

<br />

1<br />

1+x dx = ∞<br />

(−1) n x 5n <br />

dx = C + ∞ (−1) n x 5n+1<br />

5 5n +1 . Thus,<br />

0.2<br />

I =<br />

0<br />

n=0<br />

n=0<br />

<br />

1<br />

··· 0.2<br />

1+x dx = x − x6<br />

5 6 + x11<br />

11 −<br />

0<br />

=0.2 − (0.2)6<br />

6<br />

n=1<br />

+ (0.2)11<br />

11<br />

n=1<br />

− ···. The series is alternating, so if we use<br />

the first two terms, the error is at most (0.2) 11 /11 ≈ 1.9 × 10 −9 .SoI ≈ 0.2 − (0.2) 6 /6 ≈ 0.199989 to six decimal places.<br />

29. We substitute 3x for x in Example 7, and find that<br />

<br />

<br />

<br />

x arctan(3x) dx = x ∞ (−1) n (3x) 2n+1 ∞<br />

n=0 2n +1 dx = <br />

(−1) n 3 2n+1 x 2n+2<br />

<br />

dx = C + ∞ (−1) n 3 2n+1 x 2n+3<br />

n=0 2n +1<br />

n=0 (2n +1)(2n +3)<br />

So<br />

0.1<br />

0<br />

3x<br />

3<br />

x arctan(3x) dx =<br />

1 · 3 − 33 x 5<br />

3 · 5 + 35 x 7<br />

5 · 7 − 37 x ··· 9<br />

0.1<br />

7 · 9 + 0<br />

The series is alternating, so if we use three terms, the error is at most<br />

0.1<br />

0<br />

= 1<br />

10 3 − 9<br />

5 × 10 5 + 243<br />

35 × 10 7 − 2187<br />

63 × 10 9 + ···.<br />

2187<br />

63 × 10 9 ≈ 3.5 × 10−8 .So<br />

x arctan(3x) dx ≈ 1<br />

10 − 9<br />

3 5 × 10 + 243 ≈ 0.000 983 to six decimal places.<br />

5 35 × 107 31. Using the result of Example 6, ln(1 − x) =− ∞ <br />

n=1<br />

x n<br />

,withx = −0.1, wehave<br />

n<br />

ln 1.1 =ln[1− (−0.1)] = 0.1 − 0.01<br />

2 + 0.001 − 0.0001 + 0.00001 − ···. The series is alternating, so if we use only<br />

3 4 5<br />

the first four terms, the error is at most 0.00001<br />

5<br />

=0.000002. Soln 1.1 ≈ 0.1 − 0.01<br />

2 + 0.001 − 0.0001 ≈ 0.09531.<br />

3 4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!