30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

SECTION TX.10 11.9 REPRESENTATIONS OF FUNCTIONS AS POWER SERIES ¤ 485<br />

11. f(x) =<br />

3<br />

x 2 − x − 2 = 3<br />

(x − 2)(x +1) = A<br />

x − 2 + B<br />

x +1<br />

⇒<br />

3=A(x +1)+B(x − 2). Letx =2to get A =1and<br />

x = −1 to get B = −1. Thus<br />

3<br />

x 2 − x − 2 = 1<br />

x − 2 − 1<br />

x +1 = 1 <br />

1<br />

−2 1 − (x/2)<br />

<br />

<br />

= ∞ − 1 n <br />

1<br />

− 1(−1) n x n <br />

= ∞<br />

2 2<br />

n=0<br />

<br />

−<br />

n=0<br />

1<br />

1 − (−x) = − 1 2<br />

<br />

(−1) n+1 − 1<br />

2 n+1 <br />

x n<br />

∞ x<br />

n ∞ − (−x) n<br />

n=0 2 n=0<br />

We represented f as the sum of two geometric series; the first converges for x ∈ (−2, 2) and the second converges for (−1, 1).<br />

Thus, the sum converges for x ∈ (−1, 1) = I.<br />

1<br />

13. (a) f(x) =<br />

(1 + x) 2 = d −1<br />

= − d ∞<br />

<br />

<br />

(−1) n x n [from Exercise 3]<br />

dx 1+x dx n=0<br />

<br />

= ∞ (−1) n+1 nx n−1<br />

<br />

[from Theorem 2(i)] = ∞ (−1) n (n +1)x n with R =1.<br />

n=1<br />

n=0<br />

In the last step, note that we decreased the initial value of the summation variable n by 1, andthenincreased each<br />

occurrence of n in the term by 1 [also note that (−1) n+2 =(−1) n ].<br />

1<br />

(b) f(x) =<br />

(1 + x) 3 = − 1 <br />

d 1<br />

2 dx (1 + x) 2 = − 1 <br />

d ∞<br />

<br />

<br />

(−1) n (n +1)x n [from part (a)]<br />

2 dx n=0<br />

∞<br />

∞<br />

= − 1 (−1) n (n +1)nx n−1 = 1 (−1) n (n +2)(n +1)x n with R =1.<br />

2<br />

2<br />

n=1<br />

n=0<br />

x 2<br />

(c) f(x) =<br />

(1 + x) = 1<br />

3 x2 ·<br />

(1 + x) = 3 x2 · 1<br />

2<br />

= 1 ∞<br />

(−1) n (n +2)(n +1)x n+2<br />

2<br />

n=0<br />

∞<br />

(−1) n (n +2)(n +1)x n<br />

n=0<br />

[from part (b)]<br />

To write the power series with x n rather than x n+2 ,wewilldecrease each occurrence of n in the term by 2 and increase<br />

the initial value of the summation variable by 2. Thisgivesus 1 2<br />

<br />

15. f(x) =ln(5− x) =−<br />

17.<br />

<br />

dx<br />

5 − x = −1 5<br />

∞<br />

(−1) n (n)(n − 1)x n with R =1.<br />

n=2<br />

<br />

dx<br />

1 − x/5 = −1 ∞ x<br />

n<br />

dx = C −<br />

5 n=0 1 5<br />

5<br />

Putting x =0,wegetC =ln5. The series converges for |x/5| < 1 ⇔ |x| < 5,soR =5.<br />

1<br />

2 − x = 1<br />

2(1 − x/2) = 1 ∞ x<br />

2 n=0<br />

2<br />

1<br />

(x − 2) = d 1<br />

= d <br />

∞ 2 dx 2 − x dx<br />

f(x) =<br />

x 3<br />

(x − 2) 2 = ∞<br />

x3<br />

n=0<br />

n<br />

=<br />

∞<br />

n=0<br />

n=0<br />

n +1 <br />

2 n+2 xn = ∞<br />

1<br />

2 n+1 xn for x < 1 ⇔ |x| < 2. Now<br />

2<br />

<br />

1 <br />

2 n+1 xn = ∞<br />

n=0<br />

n=1<br />

n +1 <br />

2 n+2 xn+3 or ∞<br />

n <br />

2 n+1 xn−1 = ∞<br />

n=3<br />

n=0<br />

∞<br />

n=0<br />

n +1<br />

2 n+2 xn .So<br />

x n+1<br />

5 n (n +1) = C − ∞<br />

n=1<br />

n − 2<br />

2 n−1 xn for |x| < 2. Thus,R =2and I =(−2, 2).<br />

x n<br />

n 5 n

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!