30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

480 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES<br />

TX.10<br />

29.<br />

∞ <br />

a n = ∞ (−1) n 1<br />

cosh n = ∞ (−1) n b n .Nowb n = 1<br />

cosh n > 0, {b n} is decreasing, and lim b n =0,sotheseries<br />

n→∞<br />

n=1<br />

n=1<br />

n=1<br />

converges by the Alternating Series Test.<br />

Or: Write<br />

1<br />

cosh n = 2<br />

e n + e −n < 2<br />

e n and ∞ <br />

n=1<br />

1<br />

e is a convergent geometric series, so ∞<br />

n<br />

<br />

Comparison Test. So ∞ (−1) n 1<br />

is absolutely convergent and therefore convergent.<br />

cosh n<br />

31. lim<br />

k→∞ a k = lim<br />

k→∞<br />

Thus,<br />

∞<br />

k=1<br />

n=1<br />

5 k<br />

3 k +4 k =[divide by 4k ] lim<br />

k→∞<br />

5 k<br />

diverges by the Test for Divergence.<br />

3 k +4k n=1<br />

1<br />

is convergent by the<br />

cosh n<br />

<br />

(5/4) k<br />

k k 3 5<br />

= ∞ since lim =0and lim = ∞.<br />

(3/4) k +1 k→∞<br />

4<br />

k→∞<br />

4<br />

33. Let a n = sin(1/n) √ and b n = 1<br />

n n √ a n sin(1/n)<br />

<br />

.Then lim = lim =1> 0, so ∞ sin(1/n)<br />

√ converges by limit<br />

n n→∞ b n n→∞ 1/n<br />

n=1 n<br />

<br />

comparison with the convergent p-series ∞ 1<br />

[p =3/2 > 1].<br />

n 3/2<br />

<br />

<br />

n<br />

35. lim |an| = lim<br />

n→∞<br />

n→∞<br />

n<br />

n +1<br />

converges by the Root Test.<br />

n=1<br />

n<br />

2 /n<br />

= lim<br />

n→∞<br />

1<br />

[(n +1)/n] n =<br />

1<br />

lim (1 + = 1 <br />

n→∞ 1/n)n e < 1,sotheseries ∞<br />

n=1<br />

<br />

n<br />

37. lim |an| = lim<br />

n→∞<br />

n→∞ (21/n − 1) = 1 − 1=0< 1,sotheseries ∞ √ n<br />

n<br />

2 − 1 converges by the Root Test.<br />

n=1<br />

n<br />

n +1<br />

n<br />

2<br />

11.8 Power Series<br />

1. A power series is a series of the form ∞<br />

n=0 c nx n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + ···,wherex isavariableandthec n ’s are<br />

constants called the coefficients of the series.<br />

More generally, a series of the form ∞<br />

n=0 c n(x − a) n = c 0 + c 1 (x − a)+c 2 (x − a) 2 + ··· is called a power series in<br />

(x − a) or a power series centered at a or a power series about a,wherea is a constant.<br />

3. If a n = xn<br />

√ n<br />

,then lim<br />

n→∞<br />

a n+1 = lim √ · n +1<br />

a n<br />

By the Ratio Test, the series ∞ <br />

n=1<br />

n→∞ xn+1<br />

endpoints, that is, x = ±1. Whenx =1,theseries ∞ <br />

the series ∞ <br />

n=1<br />

5. If a n = (−1)n−1 x n<br />

,then<br />

a n<br />

√ n <br />

= lim<br />

x n n→∞<br />

<br />

<br />

x <br />

√ √ = lim<br />

n +1/ n n→∞<br />

|x|<br />

<br />

1+1/n<br />

= |x|.<br />

x n<br />

√ n<br />

converges when |x| < 1, so the radius of convergence R =1. Now we’ll check the<br />

n=1<br />

1<br />

√ diverges because it is a p-series with p = 1 ≤ 1. Whenx = −1,<br />

n<br />

2<br />

(−1) n<br />

√ n<br />

converges by the Alternating Series Test. Thus, the interval of convergence is I =[−1, 1).<br />

n 3<br />

lim<br />

n→∞ a <br />

n+1 = lim<br />

n→∞ (−1)n x n+1 n 3 3<br />

·<br />

= lim<br />

(n +1) 3 (−1) n−1 x n n→∞ (−1)xn3<br />

n<br />

= lim<br />

|x|<br />

=1 3 ·|x| = |x|. Bythe<br />

(n +1) 3 n→∞ n +1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!