30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 11.7 STRATEGY FOR TESTING SERIES ¤ 479<br />

9.<br />

∞<br />

k 2 e −k <br />

= ∞<br />

k=1<br />

a k<br />

k=1<br />

lim<br />

k→∞<br />

a k+1 = lim<br />

(k +1)2<br />

k→∞<br />

e k+1<br />

k 2<br />

. Using the Ratio Test, we get<br />

ek · ek<br />

k 2 <br />

= lim<br />

k→∞<br />

k +1<br />

k<br />

2<br />

· 1 =1 2 · 1<br />

e e = 1 < 1, so the series converges.<br />

e<br />

11. b n = 1<br />

n ln n > 0 for n ≥ 2, {b n} is decreasing, and lim b <br />

n =0,sothegivenseries ∞ (−1) n+1<br />

converges by the<br />

n→∞ n=2 n ln n<br />

Alternating Series Test.<br />

13. lim<br />

n→∞ a n+1 = lim<br />

n→∞ 3n+1 (n +1) 2<br />

·<br />

(n +1)!<br />

a n<br />

convergesbytheRatioTest.<br />

a n<br />

n!<br />

3 n n 2 <br />

= lim<br />

n→∞<br />

15. lim<br />

n→∞ a n+1 = lim<br />

(n +1)!<br />

n→∞ 2 · 5 · 8 ·····(3n +2)[3(n +1)+2]<br />

so the series ∞ <br />

n=0<br />

n!<br />

2 · 5 · 8 ·····(3n +2) convergesbytheRatioTest.<br />

3(n +1) 2 n +1<br />

<br />

=3 lim =0< 1,sotheseries ∞ 3 n n 2<br />

(n +1)n2 n→∞ n 2<br />

n=1 n!<br />

· 2 · 5 · 8 ·····(3n +2)<br />

n!<br />

n=1<br />

= lim<br />

n→∞<br />

n +1<br />

3n +5 = 1 3 < 1,<br />

17. lim<br />

n→∞ 21/n =2 0 =1,so lim<br />

n→∞ (−1)n 2 1/n <br />

does not exist and the series ∞ (−1) n 2 1/n diverges by the Test for Divergence.<br />

19. Let f(x) = ln √ x .Thenf 0 (x) = 2 − ln x < 0 when ln x>2 or x>e 2 ,so ln √ n is decreasing for n>e 2 .<br />

x 2x 3/2<br />

n<br />

21.<br />

ln n<br />

By l’Hospital’s Rule, lim √ = lim<br />

n→∞ n<br />

n→∞<br />

Alternating Series Test.<br />

∞<br />

n=1<br />

(−2) 2n<br />

n n<br />

1/n<br />

<br />

1/ 2 √ 2<br />

<br />

= lim √ =0,sotheseries ∞ (−1) n ln n<br />

√ converges by the<br />

n→∞<br />

n<br />

n n=1 n<br />

<br />

<br />

=<br />

n=1 ∞ n 4 <br />

n<br />

4<br />

. lim |an | = lim =0< 1, so the given series is absolutely convergent by the Root Test.<br />

n n→∞<br />

n→∞ n<br />

1<br />

23. Using the Limit Comparison Test with a n =tan and b n =<br />

n<br />

1 n ,wehave<br />

a n tan(1/n) tan(1/x) H sec 2 (1/x) · (−1/x 2 )<br />

lim = lim = lim = lim<br />

= lim<br />

n→∞ b n n→∞ 1/n x→∞ 1/x x→∞ −1/x 2<br />

x→∞ sec2 (1/x) =1 2 =1> 0. Since<br />

∞<br />

∞<br />

b n is the divergent harmonic series, a n is also divergent.<br />

n=1<br />

25. Use the Ratio Test. lim<br />

27.<br />

converges.<br />

<br />

n→∞ an+1<br />

a n<br />

<br />

= lim<br />

n→∞<br />

n=1<br />

(n +1)!<br />

e (n+1)2<br />

∞<br />

<br />

ln x<br />

dx = lim − ln x<br />

2 x2 t→∞ x − 1 t<br />

x<br />

1<br />

k ln k<br />

(k +1) < k ln k = ln k<br />

3 k 3 k ,thegivenseries ∞<br />

2 k=1<br />

· en2<br />

n!<br />

= lim<br />

n→∞<br />

(n +1)n! · e n2<br />

e n2 +2n+1<br />

n!<br />

[using integration by parts] H =1.So ∞ <br />

n=1<br />

ln n<br />

n 2<br />

k ln k<br />

3<br />

converges by the Comparison Test.<br />

(k +1)<br />

n +1<br />

= lim<br />

n→∞ e =0< 1,so ∞ n!<br />

2n+1 n=1 e n2<br />

converges by the Integral Test, and since

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!