30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

SECTION TX.10 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS ¤ 477<br />

25. UsetheRatioTestwiththeseries<br />

1 − 1 · 3 + 1 · 3 · 5 − 1 · 3 · 5 · 7 + ···+(−1) n−1 1 · 3 · 5 ·····(2n − 1) <br />

+ ···= ∞ (−1) n−1 1 · 3 · 5 ·····(2n − 1)<br />

.<br />

3! 5! 7!<br />

(2n − 1)!<br />

n=1<br />

(2n − 1)!<br />

lim<br />

n→∞ a n+1 = lim<br />

a n n→∞ (−1)n · 1 · 3 · 5 ·····(2n − 1)[2(n +1)− 1]<br />

(2n − 1)!<br />

·<br />

[2(n +1)− 1]!<br />

(−1) n−1 · 1 · 3 · 5 ·····(2n − 1) <br />

= lim<br />

(−1)(2n +1)(2n − 1)!<br />

n→∞ (2n +1)(2n)(2n − 1)! = lim 1<br />

=0< 1,<br />

n→∞ 2n<br />

27.<br />

so the given series is absolutely convergent and therefore convergent.<br />

∞<br />

n=1<br />

2 · 4 · 6 ·····(2n)<br />

n!<br />

= ∞ <br />

n=1<br />

Divergence since lim<br />

n→∞ 2n = ∞.<br />

29. Bytherecursivedefinition, lim <br />

31. (a) lim<br />

n→∞<br />

<br />

1/(n +1)3<br />

1/n 3 <br />

= lim<br />

n→∞<br />

(b) lim<br />

(n +1)<br />

n→∞ · 2n 2 n+1 n = lim<br />

(c) lim<br />

√ (−3)n · n +1<br />

n→∞<br />

(d) lim<br />

n→∞<br />

33. (a) lim<br />

(2 · 1) · (2 · 2) · (2 · 3) ·····(2 · n)<br />

n!<br />

n→∞ an+1<br />

a n<br />

n→∞<br />

<br />

= lim<br />

n→∞<br />

n 3<br />

(n +1) 3 = lim<br />

n→∞<br />

n +1<br />

2n<br />

√ <br />

n <br />

= 3 lim<br />

(−3) n−1 n→∞<br />

= ∞ <br />

n=1<br />

2 n n!<br />

n!<br />

<br />

= ∞ 2 n , which diverges by the Test for<br />

n=1<br />

5n +1<br />

4n +3 = 5 > 1, so the series diverges by the Ratio Test.<br />

4<br />

1 = lim<br />

n→∞ 2 + 1<br />

2n<br />

n<br />

n +1<br />

√ <br />

n +1<br />

<br />

<br />

1+(n +1) · 1+n2 √ = lim<br />

2 n n→∞<br />

<br />

n→∞ an+1<br />

a n<br />

series ∞ <br />

n=0<br />

1<br />

3<br />

=1. Inconclusive<br />

(1 + 1/n)<br />

<br />

1+ 1 n ·<br />

= lim<br />

x n+1<br />

n→∞ (n +1)! · n! = lim<br />

x<br />

x n n→∞ n +1 x n<br />

n!<br />

converges for all x.<br />

= 1 . Conclusive (convergent)<br />

2<br />

1<br />

=3 lim<br />

n→∞ 1+1/n =3.<br />

Conclusive (divergent)<br />

<br />

1/n 2 +1<br />

1/n 2 +(1+1/n) 2 =1. Inconclusive<br />

= |x| lim<br />

n→∞<br />

x n<br />

(b) Since the series of part (a) always converges, we must have lim =0by Theorem 11.2.6.<br />

n→∞ n!<br />

35. (a) s 5 = 5 <br />

n=1<br />

1<br />

n2 = 1 n 2 + 1 8 + 1<br />

24 + 1 64 + 1<br />

160 = 661 ≈ 0.68854. Nowtheratios<br />

960<br />

r n = a n+1 n2 n<br />

=<br />

a n (n +1)2 = n<br />

form an increasing sequence, since<br />

n+1 2(n +1)<br />

1<br />

= |x|·0=0< 1,sobytheRatioTestthe<br />

n +1<br />

r n+1 − r n = n +1<br />

2(n +2) − n<br />

2(n +1) = (n +1)2 − n(n +2) 1<br />

=<br />

> 0. So by Exercise 34(b), the error<br />

2(n +1)(n +2) 2(n +1)(n +2)<br />

a 6<br />

in using s 5 is R 5 ≤<br />

= 1/ 6 · 2 6<br />

1 − lim<br />

n→∞ rn 1 − 1/2 = 1<br />

192 ≈ 0.00521.<br />

(b) The error in using s n as an approximation to the sum is R n = an+1<br />

1 − 1 2<br />

=<br />

2<br />

(n +1)2 n+1 .WewantR n < 0.00005 ⇔<br />

1<br />

(n +1)2 n < 0.00005 ⇔ (n +1)2n > 20,000. Tofind such an n we can use trial and error or a graph. We calculate<br />

(11 + 1)2 11 =24,576,sos 11 = 11 <br />

n=1<br />

1<br />

≈ 0.693109 is within 0.00005 of the actual sum.<br />

n2n

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!