30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

476 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES<br />

7. lim<br />

k→∞<br />

a <br />

k+1 (k +1) 2<br />

k+1<br />

3<br />

= lim<br />

k→∞<br />

∞<br />

n=1<br />

a k<br />

<br />

k <br />

2 k<br />

= lim<br />

k→∞<br />

3<br />

k +1<br />

k<br />

2<br />

3<br />

1<br />

= 2 <br />

3 lim 1+ 1 <br />

= 2<br />

k→∞<br />

3<br />

k<br />

(1) = 2 < 1,sotheseries<br />

3<br />

k 2<br />

3<br />

k<br />

is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the<br />

same as convergence.<br />

9. lim<br />

n→∞<br />

a n+1<br />

a n<br />

(1.1)<br />

n+1<br />

= lim<br />

n→∞ (n +1) 4 ·<br />

=(1.1)(1) = 1.1 > 1,<br />

<br />

n 4<br />

= lim<br />

(1.1) n n→∞<br />

TX.10<br />

(1.1)n 4<br />

4<br />

=(1.1) lim<br />

(n +1) n→∞<br />

1<br />

(n +1) 4<br />

n 4<br />

1<br />

=(1.1) lim<br />

n→∞ (1 + 1/n) 4<br />

<br />

so the series ∞ (−1) n (1.1) n<br />

diverges by the Ratio Test.<br />

n=1<br />

11. Since 0 ≤ e1/n<br />

n 3<br />

n 4<br />

≤ e n 3 = e 1<br />

n 3 <br />

and ∞ <br />

n=1<br />

1<br />

n is a convergent p-series [p =3> 1], ∞<br />

3<br />

n=1<br />

e 1/n<br />

n 3<br />

converges, and so<br />

∞<br />

n=1<br />

13. lim<br />

n→∞<br />

(−1) n e 1/n<br />

is absolutely convergent.<br />

n 3<br />

a n+1<br />

a n<br />

<br />

= lim<br />

n→∞<br />

<br />

10 n+1 (n +1)42n+1<br />

·<br />

(n +2)42n+3 10 n<br />

10<br />

= lim<br />

n→∞ 4 · n +1 <br />

= 5 2 n +2 8 < 1,sotheseries ∞<br />

n=1<br />

10 n<br />

(n +1)4 2n+1<br />

is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the same as<br />

convergence.<br />

15.<br />

(−1)n arctan n <br />

< π/2<br />

n 2 n ,sosince ∞<br />

2<br />

17.<br />

19.<br />

n=1<br />

converges absolutely by the Comparison Test.<br />

∞<br />

n=2<br />

(−1) n<br />

ln n<br />

π/2<br />

n 2 = π 2<br />

∞<br />

n=1<br />

converges by the Alternating Series Test since lim<br />

n→∞<br />

1<br />

ln n > 1 n , and since ∞<br />

∞<br />

n=2<br />

(−1) n<br />

ln n<br />

|cos (nπ/3)|<br />

n!<br />

Comparison Test.<br />

n=2<br />

1<br />

n is the divergent (partial) harmonic series, ∞<br />

is conditionally convergent.<br />

≤ 1 n! and ∞ <br />

n=1<br />

1<br />

n converges (p =2> 1), the given series ∞<br />

2<br />

n=1<br />

(−1) n arctan n<br />

n 2<br />

<br />

1<br />

1<br />

ln n =0and is decreasing. Now ln n1 (byEquation3.6.6),sotheseries ∞ 1+ 1 n<br />

2<br />

n→∞<br />

n→∞ n n→∞ n<br />

n=1 n<br />

diverges by the Root Test.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!