30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

474 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES<br />

TX.10<br />

15.<br />

17.<br />

19.<br />

∞<br />

n=1<br />

cos nπ<br />

n 3/4<br />

= ∞ <br />

n=1<br />

Alternating Series Test.<br />

∞<br />

n=1<br />

π<br />

<br />

(−1) n sin . b n =sin<br />

n<br />

(−1) n<br />

n . b 3/4 n = 1 is decreasing and positive and lim<br />

n3/4 π<br />

n<br />

<br />

converges by the Alternating Series Test.<br />

π<br />

> 0 for n ≥ 2 and sin ≥ sin<br />

n<br />

n→∞<br />

π<br />

n +1<br />

1<br />

=0, so the series converges by the<br />

n3/4 <br />

π<br />

<br />

,and lim sin =sin0=0,sotheseries<br />

n→∞ n<br />

n n<br />

n! = n · n ·····n<br />

1 · 2 ·····n ≥ n ⇒ lim n n<br />

n→∞ n! = ∞ ⇒ lim (−1) n n n<br />

does not exist. So the series diverges by the Test for<br />

n→∞ n!<br />

Divergence.<br />

21.<br />

n a n s n<br />

1 1 1<br />

2 −0.35355 0.64645<br />

3 0.19245 0.83890<br />

4 −0.125 0.71390<br />

5 0.08944 0.80334<br />

6 −0.06804 0.73530<br />

7 0.05399 0.78929<br />

8 −0.04419 0.74510<br />

9 0.03704 0.78214<br />

10 −0.03162 0.75051<br />

By the Alternating Series Estimation Theorem, the error in the approximation<br />

∞<br />

n=1<br />

(−1) n−1<br />

n 3/2<br />

decimal places, rounded up).<br />

≈ 0.75051 is |s − s 10 | ≤ b 11 =1/(11) 3/2 ≈ 0.0275 (to four<br />

23. The series ∞ <br />

n=1<br />

(−1) n+1<br />

satisfies (i) of the Alternating Series Test because<br />

n 6<br />

1<br />

(n +1) < 1 and (ii) lim<br />

6 n6 n→∞<br />

1<br />

n 6 =0,sothe<br />

series is convergent. Now b 5 = 1 5 =0.000064 > 0.00005 and b 6 6 = 1 ≈ 0.00002 < 0.00005,sobytheAlternatingSeries<br />

66 Estimation Theorem, n =5. (That is, since the 6th term is less than the desired error, we need to add the first 5 terms to get the<br />

sum to the desired accuracy.)<br />

25. The series ∞ <br />

n=0<br />

(−1) n<br />

10 n n! satisfies (i) of the Alternating Series Test because 1<br />

10 n+1 (n +1)! < 1<br />

1<br />

and (ii) lim<br />

10 n n! n→∞ 10 n n! =0,<br />

sotheseriesisconvergent.Nowb 3 = 1<br />

10 3 3! ≈ 0.000 167 > 0.000 005 and b 4 = 1 =0.000 004 < 0.000 005,soby<br />

10 4 4!<br />

the Alternating Series Estimation Theorem, n =4(since the series starts with n =0,notn =1). (That is, since the 5th term<br />

is less than the desired error, we need to add the first 4 terms to get the sum to the desired accuracy.)<br />

27. b 7 = 1 7 5 = 1<br />

16,807<br />

∞<br />

n=1<br />

(−1) n+1<br />

n 5 ≈ s 6 = 6 <br />

≈ 0.000 059 5, so<br />

n=1<br />

(−1) n+1<br />

n 5 =1− 1 32 + 1<br />

243 − 1<br />

1024 + 1<br />

3125 − 1<br />

7776 ≈ 0.972 080. Addingb 7 to s 6 does not change<br />

the fourth decimal place of s 6 , so the sum of the series, correct to four decimal places, is 0.9721.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!