30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

472 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES TX.10<br />

1<br />

31. Use the Limit Comparison Test with a n =sin and b n = 1 n n .Then a n and b n are series with positive terms and<br />

33.<br />

35.<br />

a n<br />

lim<br />

n→∞ b n<br />

sin(1/n) sin θ<br />

<br />

= lim =lim =1> 0. Since ∞ b n is the divergent harmonic series,<br />

n→∞ 1/n θ→0 θ<br />

n=1<br />

∞<br />

sin (1/n) also diverges.<br />

n=1<br />

[Note that we could also use l’Hospital’s Rule to evaluate the limit:<br />

−1/x<br />

sin(1/x) H cos(1/x) ·<br />

2<br />

lim = lim<br />

= lim<br />

x→∞ 1/x x→∞ −1/x cos 1 2<br />

x→∞ x =cos0=1.]<br />

10<br />

n=1<br />

1<br />

√<br />

n4 +1 = 1 √<br />

2<br />

+ 1 √<br />

17<br />

+ 1 √<br />

82<br />

+ ···+<br />

R 10 ≤ T 10 ≤<br />

10<br />

n=1<br />

∞<br />

10<br />

1<br />

√ 10,001<br />

≈ 1.24856. Now<br />

<br />

1<br />

dx = lim − 1 t<br />

= lim<br />

− 1 x2 t→∞ x t→∞<br />

10<br />

t + 1 <br />

= 1<br />

10 10 =0.1.<br />

1<br />

1+2 = 1 n 3 + 1 5 + 1 9 + ···+ 1<br />

1025 ≈ 0.76352. Now 1<br />

1+2 < 1 , so the error is<br />

n 2n R 10 ≤ T 10 =<br />

∞ <br />

n=11<br />

1<br />

2 n = 1/211<br />

1 − 1/2<br />

37. Since d n<br />

10 n ≤ 9<br />

10 n for each n,andsince ∞ <br />

[geometric series] ≈ 0.00098.<br />

n=1<br />

will always converge by the Comparison Test.<br />

1<br />

√<br />

n4 +1 < 1 √<br />

n<br />

4 = 1 n 2 ,sotheerroris<br />

9<br />

10 n is a convergent geometric series |r| = 1<br />

10 < 1 , 0.d 1 d 2 d 3 ...= ∞ <br />

39. Since a n converges, lim an =0,sothereexistsN such that |an − 0| < 1 for all n>N ⇒ 0 ≤ an < 1 for<br />

n→∞<br />

all n>N ⇒ 0 ≤ a 2 n ≤ a n . Since a n converges, so does a 2 n by the Comparison Test.<br />

a n<br />

41. (a) Since lim = ∞, there is an integer N such that an<br />

> 1 whenever n>N.(TakeM =1in Definition 11.1.5.)<br />

n→∞ b n<br />

b n<br />

Then a n >b n whenever n>Nand since b n is divergent, a n is also divergent by the Comparison Test.<br />

(b) (i) If a n = 1<br />

ln n and b n = 1 a n<br />

for n ≥ 2,then lim = lim<br />

n n→∞ b n n→∞<br />

so by part (a),<br />

(ii) If a n = ln n<br />

n<br />

∞<br />

n=2<br />

1<br />

is divergent.<br />

ln n<br />

and b n = 1 n ,then ∞ <br />

<br />

so ∞ a n diverges by part (a).<br />

n=1<br />

n=1<br />

n<br />

ln n = lim<br />

x→∞<br />

x<br />

ln x<br />

H<br />

= lim<br />

x→∞<br />

n=1<br />

1<br />

1/x = lim<br />

x→∞ x = ∞,<br />

d n<br />

10 n<br />

a n<br />

b n is the divergent harmonic series and lim = lim ln n = lim ln x = ∞,<br />

n→∞ b n n→∞ x→∞<br />

a n<br />

43. lim nan = lim<br />

n→∞ n→∞ 1/n , so we apply the Limit Comparison Test with bn = 1 .Since lim nan > 0 we know that either both<br />

n n→∞<br />

series converge or both series diverge, and we also know that<br />

divergent.<br />

∞<br />

n=1<br />

1<br />

n diverges [p-series with p =1]. Therefore, a n must be

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!