30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 11.4 THE COMPARISON TESTS ¤ 471<br />

17. Use the Limit Comparison Test with a n =<br />

a n<br />

lim = lim<br />

n→∞ b n n→∞<br />

∞<br />

n=1<br />

1<br />

√<br />

n2 +1 .<br />

n<br />

√<br />

n2 +1 = lim<br />

n→∞<br />

1<br />

√<br />

n2 +1 and bn = 1 n :<br />

1<br />

<br />

1+(1/n2 ) =1> 0. Since the harmonic series ∞<br />

19. Use the Limit Comparison Test with a n = 1+4n<br />

1+3 n and b n = 4n<br />

3 n :<br />

a n<br />

lim = lim<br />

n→∞ b n n→∞<br />

1+4 n<br />

1+3 n 1+4 n<br />

4 n = lim<br />

n→∞ 1+3 · 3n<br />

n 4 = lim 1+4 n<br />

·<br />

n n→∞ 4 n<br />

3 n<br />

Since the geometric series b n = <br />

4 n <br />

diverges, so does ∞ 3<br />

n=1<br />

1+4 n<br />

1+3 > 1+4n<br />

n 3 n +3 > 4n<br />

n 2(3 n ) = 1 n 4<br />

or use the Test for Divergence.<br />

2 3<br />

21. Use the Limit Comparison Test with a n =<br />

√ n +2<br />

1<br />

and<br />

2n 2 bn =<br />

+ n +1 n : 3/2<br />

a n n √ 3/2 n +2<br />

lim = lim<br />

n→∞ b n n→∞ 2n 2 + n +1 = lim (n √ 3/2 n +2)/(n √ 3/2 n )<br />

n→∞<br />

Since ∞ <br />

n=1<br />

(2n 2 + n +1)/n 2 = lim<br />

n→∞<br />

1<br />

n is a convergent p-series p = 3 > 1 <br />

,theseries ∞ 3/2 2<br />

n=1<br />

<br />

3 n<br />

1<br />

1+3 = lim<br />

n n→∞ 4 +1 ·<br />

n<br />

1<br />

diverges, so does<br />

n<br />

1<br />

=1> 0<br />

1<br />

3 +1 n<br />

1+4 n<br />

. Alternatively, use the Comparison Test with<br />

1+3n n=1<br />

23. Use the Limit Comparison Test with a n = 5+2n<br />

(1 + n 2 ) 2 and bn = 1 n 3 :<br />

a n n 3 (5 + 2n)<br />

lim = lim<br />

n→∞ b n n→∞ (1 + n 2 ) = lim 5n 3 +2n 4<br />

2 n→∞ (1 + n 2 ) · 1/n 4<br />

2 1/(n 2 ) = lim<br />

2 n→∞<br />

p-series [p =3> 1], the series ∞ <br />

25. If a n =<br />

so ∞ <br />

n=1<br />

n=1<br />

5+2n<br />

also converges.<br />

(1 + n 2 )<br />

2<br />

1+n + n2<br />

√<br />

1+n2 + n and 6 bn = 1 a n<br />

,then lim = lim<br />

n n→∞ b n n→∞<br />

<br />

1+2/n<br />

2+1/n +1/n 2 = √<br />

1<br />

2 = 1 2 > 0.<br />

√ n +2<br />

also converges.<br />

2n 2 + n +1<br />

5<br />

+2 n<br />

1<br />

+1 2 =2> 0. Since ∞<br />

n 2 n=1<br />

n + n 2 + n 3<br />

√<br />

1+n2 + n 6 = lim<br />

n→∞<br />

1+n + n 2<br />

√<br />

1+n2 + n diverges by the Limit Comparison Test with the divergent harmonic series ∞<br />

6<br />

27. Use the Limit Comparison Test with a n =<br />

∞<br />

e −n <br />

= ∞<br />

n=1<br />

n=1<br />

<br />

1+ 1 2<br />

e −n and b n = e −n a n<br />

: lim<br />

n n→∞<br />

1<br />

e is a convergent geometric series |r| = 1 < 1 <br />

,theseries ∞ n e<br />

29. Clearly n! =n(n − 1)(n − 2) ···(3)(2) ≥ 2 · 2 · 2 ·····2 · 2=2 n−1 ,so 1 n! ≤ 1<br />

2 n−1 . ∞<br />

series |r| = 1 2 < 1 ,so ∞ <br />

n=1<br />

1<br />

converges by the Comparison Test.<br />

n!<br />

n=1<br />

b n<br />

1<br />

is a convergent<br />

n3 1/n 2 +1/n +1<br />

=1> 0,<br />

1/n6 +1/n 4 +1<br />

n=1<br />

1<br />

n .<br />

<br />

= lim 1+ 1 2<br />

=1> 0. Since<br />

n→∞ n<br />

<br />

1+ 1 n<br />

2<br />

e −n also converges.<br />

n=1<br />

1<br />

is a convergent geometric<br />

2n−1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!