30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

468 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES<br />

TX.10<br />

x>e 1/3 ≈ 1.4,sof is decreasing on [2, ∞), and the Integral Test applies.<br />

∞<br />

2<br />

ln x<br />

x 3<br />

converges.<br />

t<br />

ln x<br />

dx = lim<br />

t→∞<br />

2 x 3<br />

<br />

()<br />

dx = lim − ln x<br />

t→∞ 2x − 1 t <br />

= lim − 1<br />

2 4x 2 t→∞<br />

1<br />

4t (2 ln t +1)+ 1 <br />

()<br />

= 1 2 4 4 ,sotheseries ∞ ln n<br />

n=2 n 3<br />

(): u =lnx, dv = x −3 dx ⇒ du =(1/x) dx, v = − 1 2 x−2 ,so<br />

<br />

<br />

ln x<br />

dx = − 1 2 x−2 ln x − − 1 2 x−2 (1/x) dx = − 1 2 x−2 ln x + 1 2<br />

x 3<br />

<br />

(): lim −<br />

t→∞<br />

<br />

2lnt +1 H 2/t<br />

= − lim<br />

4t 2<br />

t→∞ 8t = − 1 4<br />

lim 1<br />

t→∞ t =0. 2<br />

x −3 dx = − 1 2 x−2 ln x − 1 4 x−2 + C.<br />

21. f(x) = 1<br />

x ln x is continuous and positive on [2, ∞), and also decreasing since f 0 (x) =− 1+lnx < 0 for x>2, so we can<br />

x 2 (ln x)<br />

2<br />

∞<br />

1<br />

use the Integral Test.<br />

dx = lim<br />

2 x ln x [ln(ln t→∞ x)]t 2 = lim [ln(ln t) − ln(ln 2)] = ∞,sotheseries ∞ 1<br />

t→∞ n=2 n ln n diverges.<br />

23. The function f(x) =e 1/x /x 2 is continuous, positive, and decreasing on [1, ∞), so the Integral Test applies.<br />

[g(x) =e 1/x is decreasing and dividing by x 2 doesn’t change that fact.]<br />

∞<br />

t<br />

e 1/x<br />

f(x) dx = lim dx = lim<br />

−e 1/x t<br />

= − lim (e 1/t <br />

− e) =−(1 − e) =e − 1, sotheseries ∞ e 1/n<br />

1<br />

t→∞<br />

1 x 2 t→∞<br />

1 t→∞ n=1 n 2<br />

converges.<br />

25. The function f(x) = 1 is continuous, positive, and decreasing on [1, ∞), so the Integral Test applies. We use partial<br />

x 3 + x<br />

fractions to evaluate the integral:<br />

∞<br />

1<br />

so the series ∞ <br />

n=1<br />

1<br />

dx = lim<br />

x 3 + x t→∞<br />

t<br />

1<br />

<br />

= lim ln<br />

t→∞<br />

1<br />

n 3 + n converges.<br />

1<br />

x −<br />

x <br />

dx = lim ln x − 1 t <br />

1+x 2 t→∞ 2 ln(1 + x2 ) = lim ln<br />

t→∞<br />

1<br />

t<br />

√ − ln 1 <br />

√ = lim ln<br />

1+t<br />

2 2 t→∞<br />

27. We have already shown (in Exercise 21) that when p =1the series ∞ <br />

n=2<br />

1<br />

<br />

1+1/t<br />

2 + 1 2 ln 2 <br />

= 1 2 ln 2<br />

t<br />

x<br />

√<br />

1+x<br />

2<br />

1<br />

1<br />

diverges, so assume that p 6= 1.<br />

n(ln n)<br />

p<br />

1<br />

f(x) =<br />

x(ln x) is continuous and positive on [2, ∞),andf 0 (x) =−<br />

p +lnx<br />

p x 2 (ln x) < 0 if p+1 x>e−p ,sothatf is eventually<br />

decreasing and we can use the Integral Test.<br />

∞<br />

2<br />

<br />

1<br />

(ln x)<br />

1−p<br />

dx = lim<br />

x(ln x)<br />

p t→∞ 1 − p<br />

t<br />

2<br />

(ln t)<br />

1−p<br />

[for p 6= 1] = lim<br />

−<br />

t→∞ 1 − p<br />

This limit exists whenever 1 − p1, so the series converges for p>1.<br />

<br />

(ln 2)1−p<br />

1 − p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!