30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS ¤ 467<br />

1<br />

5. The function f(x) = is continuous, positive, and decreasing on [1, ∞), so the Integral Test applies.<br />

(2x +1)<br />

3<br />

∞<br />

<br />

1<br />

t<br />

<br />

1<br />

dx = lim<br />

dx = lim − 1 t <br />

1<br />

1<br />

= lim −<br />

1 (2x +1)<br />

3 t→∞<br />

1 (2x +1)<br />

3 t→∞ 4 (2x +1) 2 t→∞<br />

1<br />

4(2t +1) + 1 <br />

= 1<br />

2 36 36 .<br />

Since this improper integral is convergent, the series ∞ <br />

n=1<br />

1<br />

is also convergent by the Integral Test.<br />

(2n +1)<br />

3<br />

7. f(x) =xe −x is continuous and positive on [1, ∞). f 0 (x) =−xe −x + e −x = e −x (1 − x) < 0 for x>1,sof is decreasing<br />

on [1, ∞). Thus, the Integral Test applies.<br />

∞<br />

1<br />

xe −x dx = lim<br />

b→∞<br />

b<br />

1 xe−x dx = lim<br />

b→∞<br />

<br />

−xe −x − e −x b<br />

1<br />

[by parts] = lim<br />

b→∞<br />

[−be −b − e −b + e −1 + e −1 ]=2/e<br />

since lim<br />

b→∞<br />

be −b = lim<br />

b→∞<br />

(b/e b ) H = lim<br />

b→∞<br />

(1/e b )=0and lim<br />

b→∞<br />

e −b =0. Thus, ∞<br />

n=1 ne−n converges.<br />

9. The series ∞ <br />

n=1<br />

for if it converged, then ∞ <br />

1<br />

n is a p-series with p =0.85 ≤ 1,soitdivergesby(1).Therefore,theseries ∞<br />

0.85<br />

n=1<br />

11. 1+ 1 8 + 1 27 + 1 64 + 1<br />

125 + ···= ∞ <br />

13. 1+ 1 3 + 1 5 + 1 7 + 1 9 + ··· = ∞ <br />

15.<br />

1<br />

would have to converge [by Theorem 8(i) in Section 11.2].<br />

n0.85 n=1<br />

n=1<br />

n=1<br />

1<br />

.Thisisap-series with p =3> 1, so it converges by (1).<br />

n3 1<br />

2n − 1 . The function f(x) = 1<br />

2x − 1 is<br />

continuous, positive, and decreasing on [1, ∞), so the Integral Test applies.<br />

∞<br />

1<br />

diverges.<br />

∞<br />

n=1<br />

1<br />

dx = lim<br />

2x − 1 t→∞<br />

5 − 2 √ n<br />

n 3<br />

=5 ∞ <br />

n=1<br />

t<br />

1<br />

2<br />

must also diverge,<br />

n0.85 1<br />

<br />

dx = lim 1<br />

2x − 1 ln |2x − 1| t<br />

= 1 lim (ln(2t − 1) − 0) = ∞,sotheseries ∞ 1<br />

t→∞ 2 1 2 t→∞ n=1 2n − 1<br />

1<br />

n − 2 ∞<br />

3 n=1<br />

<br />

with p =3> 1 and p =<br />

5<br />

> 1 ∞<br />

2<br />

. Thus,<br />

1<br />

n by Theorem 11.2.8, since ∞<br />

5/2<br />

n=1<br />

5 − 2 √ n<br />

n 3<br />

converges.<br />

n=1<br />

1<br />

n and ∞<br />

3 n=1<br />

1<br />

both converge by (1)<br />

n5/2 17. The function f(x) = 1 is continuous, positive, and decreasing on [1, ∞),sowecanapplytheIntegralTest.<br />

x 2 +4<br />

∞<br />

<br />

1<br />

t<br />

t<br />

1<br />

1 x<br />

dx = lim<br />

dx = lim<br />

1 x 2 +4 t→∞<br />

1 x 2 +4 t→∞ 2 tan−1 = 1 <br />

t 1<br />

2<br />

1<br />

2 lim tan −1 − tan −1<br />

t→∞ 2<br />

2<br />

= 1 π 1<br />

2 2 2<br />

− tan−1<br />

19.<br />

Therefore, the series ∞ <br />

∞<br />

n=1<br />

ln n<br />

n 3<br />

= ∞ <br />

n=2<br />

n=1<br />

1<br />

n 2 +4 converges.<br />

ln n ln 1<br />

ln x<br />

since =0. The function f(x) = is continuous and positive on [2, ∞).<br />

n3 1 x 3<br />

f 0 (x) = x3 (1/x) − (ln x)(3x 2 )<br />

= x2 − 3x 2 ln x<br />

= 1 − 3lnx < 0 ⇔ 1 − 3lnx 1<br />

(x 3 ) 2 x 6<br />

x 4 3<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!