30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

466 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES<br />

TX.10<br />

73. (a) At the first step, only the interval 1<br />

, 2<br />

3 3 (length<br />

1<br />

) is removed. At the second step, we remove the intervals 1<br />

, 2<br />

3 9 9 and<br />

7 , 8<br />

9 9 , which have a total length of 2 · 1<br />

2<br />

. At the third step, we remove 2 2 intervals, each of length 1<br />

3<br />

3<br />

3<br />

. In general,<br />

at the nth step we remove 2 n−1 intervals, each of length <br />

1 n<br />

,foralengthof2 n−1 · <br />

1 n <br />

= 1 2<br />

n−1<br />

. Thus, the total<br />

3<br />

3 3 3<br />

length of all removed intervals is ∞ <br />

n=1<br />

the nth step, the leftmost interval that is removed is <br />

1 n<br />

, 2<br />

3<br />

the rightmost interval removed is 1 − 2<br />

3<br />

are 1 3 , 2 3 , 1 9 , 2 9 , 7 9 ,and 8 9 .<br />

<br />

1 2<br />

n−1<br />

= 1/3 =1 geometric series with a = 1 and r = 2<br />

3 3<br />

1 − 2/3 3 3 . Notice that at<br />

n <br />

3 ,soweneverremove0,and0 is in the Cantor set. Also,<br />

n<br />

, 1 − <br />

1 n <br />

3 ,so1 is never removed. Some other numbers in the Cantor set<br />

(b) The area removed at the first step is 1 ;atthesecondstep,8 · <br />

1 2<br />

;atthethirdstep,(8) 2 · <br />

1 3<br />

. In general, the area<br />

9 9<br />

9<br />

removed at the nth step is (8) n−1 <br />

1 n <br />

9<br />

= 1 8<br />

n−1<br />

9 9<br />

, so the total area of all removed squares is<br />

<br />

∞ n−1<br />

1 8<br />

= 1/9<br />

9 9 1 − 8/9 =1.<br />

n=1<br />

75. (a) For ∞ <br />

n=1<br />

n<br />

(n +1)! , s1 = 1<br />

1 · 2 = 1 2 , s2 = 1 2 + 2<br />

1 · 2 · 3 = 5 6 , s3 = 5 6 + 3<br />

1 · 2 · 3 · 4 = 23<br />

24 ,<br />

s 4 = 23<br />

24 + 4<br />

1 · 2 · 3 · 4 · 5 = 119<br />

120 . The denominators are (n +1)!,soaguesswouldbes n =<br />

(b) For n =1, s 1 = 1 2 = 2! − 1 , so the formula holds for n =1. Assume s k =<br />

2!<br />

s k+1 =<br />

=<br />

(k +1)!− 1<br />

(k +1)!<br />

(k +2)!− 1<br />

(k +2)!<br />

(k +1)!− 1<br />

.Then<br />

(k +1)!<br />

(n +1)!− 1<br />

.<br />

(n +1)!<br />

+ k +1 (k +1)!− 1 k +1 (k +2)!− (k +2)+k +1<br />

= +<br />

=<br />

(k +2)! (k +1)! (k +1)!(k +2) (k +2)!<br />

Thus, the formula is true for n = k +1. So by induction, the guess is correct.<br />

<br />

(n +1)!− 1<br />

(c) lim sn = lim<br />

= lim 1 −<br />

n→∞ n→∞ (n +1)! n→∞<br />

<br />

1<br />

<br />

=1and so ∞<br />

(n +1)!<br />

n=1<br />

n<br />

(n +1)! =1.<br />

11.3 The Integral Test and Estimates of Sums<br />

1. The picture shows that a 2 = 1 2<br />

2 < 1<br />

dx,<br />

1.3 x1.3 a 3 = 1<br />

3 1.3 < 3<br />

2<br />

1<br />

x dx, and so on, so ∞<br />

1.3<br />

1<br />

n=2<br />

<br />

1 ∞<br />

n < 1.3<br />

1<br />

1<br />

dx. The<br />

x1.3 integral converges by (7.8.2) with p =1.3 > 1, so the series converges.<br />

3. The function f(x) =1/ 5√ x = x −1/5 is continuous, positive, and decreasing on [1, ∞), so the Integral Test applies.<br />

∞<br />

t <br />

x −1/5 t <br />

dx = lim<br />

1<br />

t→∞ 1 x−1/5 5<br />

dx = lim<br />

t→∞ 4 x4/5 5<br />

= lim<br />

1 t→∞ 4 t4/5 − 5 = ∞,so ∞ 1/ 5√ n diverges.<br />

4<br />

n=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!