30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

61. e s n<br />

= e 1+ 1 2 + 1 3 +···+ 1 n = e 1 e 1/2 e 1/3 ···e 1/n > (1 + 1) 1+ 1 2<br />

= 2 3 4<br />

1 2 3<br />

··· n +1<br />

n<br />

= n +1<br />

<br />

1+<br />

1<br />

3 ···<br />

1+<br />

1<br />

n<br />

SECTION 11.2 SERIES ¤ 465<br />

[e x > 1+x]<br />

Thus, e s n<br />

>n+1and lim<br />

n→∞ es n<br />

= ∞. Since{s n} is increasing, lim sn = ∞, implying that the harmonic series is<br />

n→∞<br />

divergent.<br />

TX.10<br />

63. Let d n be the diameter of C n . We draw lines from the centers of the C i to<br />

the center of D (or C), and using the Pythagorean Theorem, we can write<br />

1 2 + <br />

1 − 1 2<br />

2 d1 = <br />

1+ 1 2<br />

2 d1 ⇔<br />

1= <br />

1+ 1 2<br />

2 d1 − <br />

1 − 1 2<br />

2 d1 =2d 1 [difference of squares] ⇒ d 1 = 1 . 2<br />

Similarly,<br />

1= <br />

1+ 1 2<br />

2 d2 − <br />

1 − d 1 − 1 2<br />

2 d2 =2d 2 +2d 1 − d 2 1 − d 1d 2<br />

=(2− d 1)(d 1 + d 2)<br />

⇔<br />

d 2 = 1 (1 − d1)2<br />

− d 1 = , 1= <br />

1+ 1 2<br />

2<br />

2 − d 1 2 − d d3 − <br />

1 − d 1 − d 2 − 1 2<br />

2 d3 ⇔ d 3 =<br />

1<br />

d n+1 =<br />

<br />

1 −<br />

n<br />

i=1 di 2<br />

2 − n<br />

i=1 d i<br />

[1 − (d1 + d2)]2<br />

, and in general,<br />

2 − (d 1 + d 2 )<br />

. If we actually calculate d 2 and d 3 from the formulas above, we find that they are 1 6 = 1<br />

2 · 3 and<br />

1<br />

12 = 1<br />

3 · 4 respectively, so we suspect that in general, d 1<br />

n = . To prove this, we use induction: Assume that for all<br />

n(n +1)<br />

k ≤ n, d k =<br />

1<br />

k(k +1) = 1 k − 1<br />

k +1 .Then n<br />

i=1<br />

2<br />

<br />

1 − n<br />

n +1<br />

formula for d n+1 ,wegetd n+1 = =<br />

2 −<br />

n<br />

n +1<br />

d i =1− 1<br />

n +1 =<br />

1<br />

(n +1) 2<br />

n +2<br />

n +1<br />

=<br />

n<br />

n +1<br />

[telescoping sum]. Substituting this into our<br />

1<br />

, and the induction is complete.<br />

(n +1)(n +2)<br />

Now, we observe that the partial sums n<br />

i=1 d i of the diameters of the circles approach 1 as n →∞;thatis,<br />

∞ <br />

a n = ∞<br />

n=1<br />

n=1<br />

1<br />

=1, which is what we wanted to prove.<br />

n(n +1)<br />

65. The series 1 − 1+1− 1+1− 1+··· diverges (geometric series with r = −1) so we cannot say that<br />

0=1− 1+1− 1+1− 1+···.<br />

<br />

67. ∞<br />

n=1 ca <br />

n = lim n<br />

n→∞<br />

i=1 ca i = lim c n<br />

n→∞<br />

i=1 a <br />

i = c lim n<br />

n→∞<br />

i=1 a i = c ∞<br />

n=1 a n, which exists by hypothesis.<br />

69. Suppose on the contrary that (a n + b n ) converges. Then (a n + b n ) and a n are convergent series. So by Theorem 8,<br />

[(an + b n ) − a n ] would also be convergent. But [(a n + b n ) − a n ]= b n , a contradiction, since b n is given to be<br />

divergent.<br />

71. The partial sums {s n } form an increasing sequence, since s n − s n−1 = a n > 0 for all n. Also, the sequence {s n } is bounded<br />

since s n ≤ 1000 for all n. So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series<br />

<br />

an is convergent.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!