30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

462 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES<br />

TX.10<br />

15.<br />

17.<br />

19.<br />

21.<br />

23.<br />

∞<br />

6(0.9) n−1 is a geometric series with first term a =6and ratio r =0.9. Since|r| =0.9 < 1, the series converges to<br />

n=1<br />

a<br />

1 − r = 6<br />

1 − 0.9 = 6<br />

0.1 =60.<br />

∞<br />

n=1<br />

(−3) n−1<br />

converges to<br />

∞<br />

n=0<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

4 n = 1 4<br />

π n<br />

3 n+1 = 1 3<br />

1<br />

2n = 1 2<br />

<br />

∞<br />

− 3 n−1<br />

. The latter series is geometric with a =1and ratio r = − 3<br />

4 .Since|r| = 3 < 1, it<br />

4 4<br />

n=1<br />

1<br />

1 − (−3/4) = 4 . Thus, the given series converges to <br />

1 4<br />

<br />

7 4 7 =<br />

1<br />

. 7<br />

∞<br />

n=1<br />

∞<br />

n=0<br />

π<br />

3<br />

<br />

1<br />

n ,whichdiverges. If<br />

n π<br />

is a geometric series with ratio r = .Since|r| > 1, the series diverges.<br />

3<br />

1<br />

n diverges since each of its partial sums is 1 times the corresponding partial sum of the harmonic series<br />

2<br />

∞<br />

n=1<br />

1<br />

were to converge, then<br />

∞<br />

2n<br />

In general, constant multiples of divergent series are divergent.<br />

∞<br />

k=2<br />

<br />

n=1<br />

<br />

1<br />

n wouldalsohavetoconvergebyTheorem8(i).<br />

k 2<br />

diverges by the Test for Divergence since lim<br />

k 2 − 1 a k 2<br />

k = lim =16= 0.<br />

k→∞ k→∞ k 2 − 1<br />

25. Converges.<br />

∞<br />

n=1<br />

1+2 n<br />

3 n = ∞ <br />

n=1<br />

1<br />

3 n + 2n<br />

3 n <br />

= ∞ <br />

n=1<br />

1<br />

3<br />

= 1/3<br />

1 − 1/3 + 2/3<br />

1 − 2/3 = 1 2 +2= 5 2<br />

n n 2<br />

+<br />

3<br />

[sum of two convergent geometric series]<br />

27.<br />

∞<br />

n=1<br />

n√<br />

2=2+<br />

√<br />

2+<br />

3 √ 2+ 4√ 2+··· diverges by the Test for Divergence since<br />

29.<br />

31.<br />

33.<br />

lim a n = lim<br />

n√<br />

2 = lim<br />

n→∞ n→∞ n→∞ 21/n =2 0 =16= 0.<br />

∞<br />

n=1<br />

n 2 +1<br />

ln<br />

diverges by the Test for Divergence since<br />

2n 2 +1<br />

<br />

n 2<br />

lim an = lim ln +1<br />

n→∞ n→∞ 2n 2 +1<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

<br />

=ln lim<br />

n→∞<br />

<br />

n 2 +1<br />

=ln 1<br />

2n 2 2<br />

+1<br />

6=0.<br />

arctan n diverges by the Test for Divergence since lim<br />

n→∞ a n = lim<br />

n→∞ arctan n = π 2 6=0.<br />

<br />

1<br />

e = ∞ n 1<br />

is a geometric series with first term a = 1 n n=1 e<br />

e and ratio r = 1 e .Since|r| = 1 < 1, the series converges<br />

e<br />

1/e<br />

to<br />

1 − 1/e = 1/e<br />

1 − 1/e · e<br />

e = 1<br />

e − 1 .ByExample6, ∞<br />

n=1<br />

<br />

∞ 1<br />

n=1 e + 1 <br />

= ∞ 1<br />

n n(n +1) n=1 e + ∞<br />

n n=1<br />

1<br />

=1. Thus, by Theorem 8(ii),<br />

n(n +1)<br />

1<br />

n(n +1) = 1<br />

e − 1 +1= 1<br />

e − 1 + e − 1<br />

e − 1 =<br />

e<br />

e − 1 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!