30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

456 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES<br />

TX.10<br />

25. a n = (−1)n−1 n<br />

n 2 +1<br />

Theorem 6.<br />

= (−1)n−1<br />

n +1/n ,so0 ≤ |an| = 1<br />

n +1/n ≤ 1 → 0 as n →∞,soan → 0 by the Squeeze Theorem and<br />

n<br />

Converges<br />

27. a n =cos(n/2). This sequence diverges since the terms don’t approach any particular real number as n →∞.<br />

The terms take on values between −1 and 1.<br />

29. a n =<br />

(2n − 1)!<br />

(2n +1)! = (2n − 1)!<br />

(2n +1)(2n)(2n − 1)! = 1<br />

→ 0 as n →∞. Converges<br />

(2n +1)(2n)<br />

31. a n = en + e −n<br />

e 2n − 1 · e−n<br />

e<br />

e n − e −n → 0 as n →∞because 1+e−2n → 1 and e n − e −n →∞.<br />

−n<br />

=<br />

1+e−2n<br />

Converges<br />

33. a n = n 2 e −n = n2<br />

x 2<br />

.Since lim<br />

en x→∞ e x<br />

= H 2x<br />

lim<br />

x→∞ e x<br />

= H 2<br />

lim =0, it follows from Theorem 3 that lim an =0.<br />

x→∞ e Converges<br />

x n→∞<br />

35. 0 ≤ cos2 n<br />

≤ 1<br />

<br />

[since 0 ≤ cos 2 1 cos 2<br />

n ≤ 1], so since lim<br />

2 n 2 n n→∞ 2 =0, n<br />

converges to 0 by the Squeeze Theorem.<br />

n 2 n<br />

37. a n = n sin(1/n) = sin(1/n)<br />

sin(1/x) sin t<br />

. Since lim = lim<br />

1/n x→∞ 1/x t→0 + t<br />

that {a n } converges to 1.<br />

39. y =<br />

<br />

1+ 2 x <br />

⇒ ln y = x ln 1+ 2 <br />

,so<br />

x x<br />

<br />

1<br />

− 2 x 2 <br />

ln(1 + 2/x) H 1+2/x<br />

lim ln y = lim<br />

= lim<br />

x→∞ x→∞ 1/x x→∞ −1/x 2<br />

<br />

lim 1+ 2 x<br />

= lim<br />

x→∞ x x→∞ eln y = e 2 ,sobyTheorem3, lim<br />

n→∞<br />

41. a n =ln(2n 2 +1)− ln(n 2 +1)=ln<br />

= lim<br />

x→∞<br />

[where t =1/x] =1, it follows from Theorem 3<br />

2<br />

1+2/x =2<br />

⇒<br />

<br />

1+ 2 n<br />

n<br />

= e 2 . Convergent<br />

2n 2 +1 2+1/n<br />

2<br />

<br />

=ln<br />

→ ln 2 as n →∞.<br />

n 2 +1 1+1/n 2<br />

Convergent<br />

43. {0, 1, 0, 0, 1, 0, 0, 0, 1,...} diverges since the sequence takes on only two values, 0 and 1, and never stays arbitrarily close to<br />

either one (or any other value) for n sufficiently large.<br />

45. a n = n!<br />

2 = 1 n 2 · 2<br />

2 · 3 (n − 1)<br />

····· · n<br />

2 2 2 ≥ 1 2 · n<br />

2<br />

[for n>1] = n 4<br />

→∞as n →∞,so{an} diverges.<br />

47. From the graph, it appears that the sequence converges to 1.<br />

{(−2/e) n } converges to 0 by (9), and hence {1+(−2/e) n }<br />

converges to 1+0=1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!