30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

454 ¤ CHAPTER 10 PROBLEMS PLUS<br />

TX.10<br />

(b) dy<br />

dt = (1 + t3 )(6t) − 3t 2 (3t 2 ) 6t − 3t4<br />

=<br />

(1 + t 3 ) 2 (1 + t 3 ) =0when 6t − 2 3t4 =3t(2 − t 3 )=0 ⇒ t =0or t = 3√ 2,sothereare<br />

horizontal tangents at (0, 0) and 3 √ 2, 3√ 4 . Using the symmetry from part (a), we see that there are vertical tangents at<br />

(0, 0) and 3 √ 4, 3√ 2 .<br />

(c) Notice that as t →−1 + ,wehavex →−∞and y →∞.Ast →−1 − ,wehavex →∞and y →−∞.Also<br />

y − (−x − 1) = y + x +1= 3t +3t2 +(1+t 3 ) (t +1)3 (t +1)2<br />

= = → 0 as t →−1. Soy = −x − 1 is a<br />

1+t 3 1+t 3 t 2 − t +1<br />

slant asymptote.<br />

(d) dx<br />

dt = (1 + t3 )(3) − 3t(3t 2 )<br />

= 3 − 6t3<br />

dy<br />

and from part (b) we have<br />

(1 + t 3 ) 2 (1 + t 3 )<br />

2<br />

dt<br />

<br />

d dy<br />

Also d2 y<br />

dx = dt dx<br />

= 2(1 + t3 ) 4<br />

2 dx/dt 3(1 − 2t 3 ) > 0 ⇔ t< √ 1 3 3<br />

2 .<br />

=<br />

6t − 3t4<br />

(1 + t 3 ) 2 .Sody dx = dy/dt<br />

dx/dt = t(2 − t3 )<br />

1 − 2t 3 .<br />

So the curve is concave upward there and has a minimum point at (0, 0)<br />

and a maximum point at 3 √ 2, 3√ 4 . Using this together with the<br />

information from parts (a), (b), and (c), we sketch the curve.<br />

3 3t 3t<br />

(e) x 3 + y 3 2<br />

3<br />

=<br />

+<br />

= 27t3 +27t 6<br />

= 27t3 (1 + t 3 )<br />

= 27t3<br />

1+t 3 1+t 3 (1 + t 3 ) 3 (1 + t 3 ) 3 (1 + t 3 ) and 2<br />

3xy =3 3t 3t<br />

2 27t 3<br />

=<br />

1+t 3 1+t 3 (1 + t 3 ) 2 ,sox3 + y 3 =3xy.<br />

(f) We start with the equation from part (e) and substitute x = r cos θ, y = r sin θ. Then x 3 + y 3 =3xy<br />

r 3 cos 3 θ + r 3 sin 3 θ =3r 2 cos θ sin θ. Forr 6= 0,thisgivesr =<br />

by cos 3 θ,weobtainr =<br />

1 sin θ<br />

3<br />

cos θ cos θ<br />

1+ sin3 θ<br />

cos 3 θ<br />

(g) The loop corresponds to θ ∈ 0, π 2<br />

<br />

, so its area is<br />

A = π/2<br />

0<br />

r 2<br />

2 dθ = 1 2<br />

π/2<br />

0<br />

<br />

9<br />

= lim<br />

b→∞<br />

2 −<br />

1<br />

(1 + 3 u3 ) −1 b<br />

= 3 0 2<br />

=<br />

3secθ tan θ<br />

1+tan 3 θ .<br />

2 3secθ tan θ<br />

dθ = 9 π/2 sec 2 θ tan 2 θ<br />

1+tan 3 θ 2<br />

0<br />

(1 + tan 3 θ) dθ = 9 ∞<br />

2 2 0<br />

3cosθ sin θ<br />

cos 3 θ +sin 3 . Dividing numerator and denominator<br />

θ<br />

⇒<br />

u 2 du<br />

(1 + u 3 ) 2 [let u =tanθ]<br />

(h)Bysymmetry,theareabetweenthefoliumandtheliney = −x − 1 is equal to the enclosed area in the third quadrant,<br />

plus twice the enclosed area in the fourth quadrant. The area in the third quadrant is 1 , and since y = −x − 1 ⇒<br />

2<br />

1<br />

r sin θ = −r cos θ − 1 ⇒ r = −<br />

, the area in the fourth quadrant is<br />

sin θ +cosθ<br />

<br />

1 −π/4 2 2<br />

1<br />

3secθ tan θ<br />

−<br />

−<br />

dθ CAS<br />

= 1 2<br />

sin θ +cosθ 1+tan 3 θ<br />

2 . Therefore, the total area is 1 +2 <br />

1<br />

2 2 =<br />

3<br />

. 2<br />

−π/2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!