30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

PROBLEMS PLUS<br />

1. x =<br />

dx<br />

dt<br />

t<br />

1<br />

cos u<br />

u<br />

du, y = t<br />

1<br />

sin u<br />

u<br />

dx<br />

du,sobyFTC1,wehave<br />

dt = cos t and dy<br />

t<br />

dt = sin t . Vertical tangent lines occur when<br />

t<br />

=0 ⇔ cos t =0. The parameter value corresponding to (x, y) =(0, 0) is t =1, so the nearest vertical tangent<br />

occurs when t = π . Therefore, the arc length between these points is<br />

2<br />

L =<br />

π/2<br />

1<br />

2 dx<br />

+<br />

dt<br />

dy<br />

dt<br />

2<br />

dt =<br />

π/2<br />

1<br />

<br />

cos 2 <br />

t<br />

+ sin2 t<br />

π/2<br />

dt<br />

dt =<br />

t 2 t 2 1 t = ln t π/2<br />

=ln π 1<br />

2<br />

3. In terms of x and y, wehavex = r cos θ =(1+c sin θ)cosθ =cosθ + c sin θ cos θ =cosθ + 1 c sin 2θ and<br />

2<br />

y = r sin θ =(1+c sin θ)sinθ =sinθ + c sin 2 θ.Now−1 ≤ sin θ ≤ 1 ⇒ −1 ≤ sin θ + c sin 2 θ ≤ 1+c ≤ 2,so<br />

−1 ≤ y ≤ 2. Furthermore,y =2when c =1and θ = π ,whiley = −1 for c =0and θ = 3π 2 2<br />

. Therefore, we need a viewing<br />

rectangle with −1 ≤ y ≤ 2.<br />

To find the x-values, look at the equation x =cosθ + 1 2 c sin 2θ and use the fact that sin 2θ ≥ 0 for 0 ≤ θ ≤ π 2 and<br />

sin 2θ ≤ 0 for − π 2<br />

≤ θ ≤ 0. [Because r =1+c sin θ is symmetric about the y-axis, we only need to consider<br />

− π 2 ≤ θ ≤ π 2 .] So for − π 2<br />

≤ θ ≤ 0, x has a maximum value when c =0and then x =cosθ has a maximum value<br />

of 1 at θ =0. Thus, the maximum value of x must occur on 0, π 2<br />

<br />

with c =1.Thenx =cosθ +<br />

1<br />

sin 2θ ⇒<br />

2<br />

dx<br />

= − sin θ +cos2θ = − sin θ +1− dθ 2sin2 θ ⇒ dx = −(2 sin θ − 1)(sin θ +1)=0when sin θ = −1 or 1 dθ 2<br />

[but sin θ 6=−1 for 0 ≤ θ ≤ π ]. If sin θ = 1 ,thenθ = π and<br />

2 2 6<br />

x =cos π + 1 sin π = √ √ 3<br />

6 2 3 4 3. Thus, the maximum value of x is<br />

3<br />

4 3, and,<br />

by symmetry, the minimum value is − 3 4<br />

√<br />

3. Therefore, the smallest<br />

viewing rectangle that contains every member of the family of polar curves<br />

r =1+c sin θ,where0 ≤ c ≤ 1,is √ √ <br />

− 3 4 3,<br />

3<br />

4 3 × [−1, 2].<br />

3t 1<br />

5. (a) If (a, b) lies on the curve, then there is some parameter value t 1 such that<br />

1+t 3 1<br />

= a and 3t2 1<br />

= b. Ift<br />

1+t 3 1 =0,<br />

1<br />

the point is (0, 0), which lies on the line y = x. Ift 1 6=0, then the point corresponding to t = 1 t 1<br />

is given by<br />

x = 3(1/t 1)<br />

1+(1/t 1 ) = 3t2 1<br />

3 t 3 1 +1 = b, y = 3(1/t 1) 2<br />

1+(1/t 1 ) = 3t 1<br />

= a. So(b, a) also lies on the curve. [Another way to see<br />

3 +1<br />

this is to do part (e) first; the result is immediate.] The curve intersects the line y = x when<br />

t 3 1<br />

3t<br />

1+t 3 = 3t2<br />

1+t 3 ⇒<br />

t = t 2 ⇒ t =0or 1, so the points are (0, 0) and 3<br />

, 3<br />

2 2 .<br />

453

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!