30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 10.5 CONIC SECTIONS ¤ 441<br />

(x 0 − a) 2 = a 2 +4p 2 ⇔ x 0 = a ± a 2 +4p 2 . The slopes of the tangent lines at x = a ± a 2 +4p 2<br />

are a ± a 2 +4p 2<br />

, so the product of the two slopes is<br />

2p<br />

a + a 2 +4p 2<br />

2p<br />

· a − a 2 +4p 2<br />

2p<br />

= a2 − (a 2 +4p 2 )<br />

4p 2<br />

= −4p2<br />

4p 2 = −1,<br />

showing that the tangent lines are perpendicular.<br />

59. For x 2 +4y 2 =4,orx 2 /4+y 2 =1, use the parametrization x =2cost, y =sint, 0 ≤ t ≤ 2π to get<br />

L =4 π/2<br />

0<br />

<br />

(dx/dt)2 +(dy/dt) 2 dt =4 π/2<br />

0<br />

<br />

4sin 2 t +cos 2 tdt=4 <br />

π/2<br />

0 3sin 2 t +1dt<br />

Using Simpson’s Rule with n =10, ∆t = π/2 − 0<br />

10<br />

= π 20 ,andf(t) = 3sin 2 t +1,weget<br />

L ≈ 4 3<br />

π<br />

20<br />

<br />

f(0) + 4f<br />

π<br />

20<br />

<br />

+2f<br />

2π<br />

<br />

20 + ···+2f 8π<br />

<br />

20 +4f 9π<br />

<br />

20 + f π<br />

<br />

2 ≈ 9.69<br />

61.<br />

x 2<br />

a − y2<br />

y2<br />

=1 ⇒ 2 b2 b = x2 − a 2<br />

⇒ y = ± b √<br />

x2 − a 2 a 2 a<br />

2 .<br />

A =2<br />

c<br />

a<br />

b<br />

a<br />

<br />

x2 − a 2 dx 39 = 2b<br />

a<br />

x<br />

2<br />

<br />

x2 − a 2 − a2<br />

2 ln x +<br />

<br />

x2 − a 2 <br />

c<br />

a<br />

= b √<br />

c c2 − a<br />

a<br />

2 − a 2 ln √ c + c2 − a 2 + a 2 ln |a| <br />

Since a 2 + b 2 = c 2 ,c 2 − a 2 = b 2 ,and √ c 2 − a 2 = b.<br />

= b cb − a 2 ln(c + b)+a 2 ln a = b cb + a 2 (ln a − ln(b + c)) <br />

a<br />

a<br />

= b 2 c/a + ab ln[a/(b + c)], wherec 2 = a 2 + b 2 .<br />

63. Differentiating implicitly, x2<br />

a + y2<br />

2x<br />

=1 ⇒ 2 b2 a + 2yy0 =0 ⇒ y 0 = − b2 x<br />

2 b 2 a 2 y<br />

[y 6= 0]. Thus, the slope of the tangent<br />

line at P is − b2 x 1<br />

a 2 y 1<br />

. The slope of F 1 P is<br />

we have<br />

tan α =<br />

1 −<br />

and tan β =<br />

1 −<br />

Thus, α = β.<br />

y 1<br />

x 1 + c + b2 x 1<br />

a 2 y 1<br />

b 2 x 1 y 1<br />

a 2 y 1 (x 1 + c)<br />

= b2 cx 1 + a 2<br />

cy 1 (cx 1 + a 2 ) = b2<br />

cy 1<br />

− b2 x 1<br />

a 2 y 1<br />

− y 1<br />

x 1 − c<br />

b 2 x 1 y 1<br />

a 2 y 1 (x 1 − c)<br />

y 1<br />

x 1 + c and of F 2P is<br />

y 1<br />

. By the formula in Problem 17 on text page 268,<br />

x 1 − c<br />

<br />

= a2 y1 2 + b 2 x 1 (x 1 + c)<br />

= a2 b 2 + b 2 cx 1 using b 2 x 2 1 + a2 y1 2 = a2 b 2 ,<br />

a 2 y 1 (x 1 + c) − b 2 x 1 y 1 c 2 x 1 y 1 + a 2 cy 1 and a 2 − b 2 = c 2<br />

= −a2 y 2 1 − b 2 x 1 (x 1 − c)<br />

a 2 y 1 (x 1 − c) − b 2 x 1 y 1<br />

= −a2 b 2 + b 2 cx 1<br />

c 2 x 1 y 1 − a 2 cy 1<br />

= b2 cx 1 − a 2<br />

cy 1 (cx 1 − a 2 ) = b2<br />

cy 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!