30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

83. tan ψ =tan(φ − θ) =<br />

=<br />

dy<br />

dθ − dx<br />

dθ tan θ<br />

dx<br />

dθ + dy =<br />

dθ tan θ<br />

dy<br />

dx − tan θ<br />

1+ dy =<br />

dx tan θ<br />

dr<br />

dr<br />

dθ sin θ + r cos θ − tan θ<br />

dr<br />

dr<br />

dθ cos θ − r sin θ +tanθ<br />

tan φ − tan θ<br />

1+tanφ tan θ =<br />

= r cos2 θ + r sin 2 θ<br />

dr<br />

dθ cos2 θ + dr = r<br />

dr/dθ<br />

dθ sin2 θ<br />

TX.10SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES ¤ 431<br />

dy/dθ<br />

dx/dθ − tan θ<br />

1+ dy/dθ<br />

dx/dθ tan θ<br />

dθ cos θ − r sin θ <br />

dθ sin θ + r cos θ =<br />

r cos θ + r · sin2 θ<br />

cos θ<br />

dr dr<br />

cos θ +<br />

dθ dθ · sin2 θ<br />

cos θ<br />

10.4 Areas and Lengths in Polar Coordinates<br />

1. r = θ 2 , 0 ≤ θ ≤ π 4 . A = π/4<br />

3. r =sinθ, π 3 ≤ θ ≤ 2π 3 .<br />

2π/3<br />

1<br />

A =<br />

2 sin2 θdθ= 1 4<br />

π/3<br />

<br />

= 1 4<br />

<br />

2π<br />

3 − 1 2<br />

− √ 3<br />

2<br />

0<br />

π/4<br />

π/4<br />

1<br />

2 r2 1<br />

dθ =<br />

2 (θ2 ) 2 1<br />

dθ =<br />

2 θ4 dθ = 1<br />

θ5 π/4 <br />

= 1 π<br />

5<br />

= 1<br />

10 0 10 4 10,240 π5<br />

0<br />

0<br />

2π/3<br />

<br />

− π 3 + 1 2<br />

π/3<br />

√3<br />

(1 − cos 2θ) dθ = 1 4<br />

2<br />

<br />

= 1 4<br />

<br />

θ −<br />

1<br />

sin 2θ 2π/3<br />

= 1 2π − 1 sin 4π − π + 1 sin <br />

2π<br />

2 π/3 4 3 2 3 3 2 3<br />

<br />

π<br />

+ √ <br />

3<br />

= π + √ 3<br />

3 2 12 8<br />

5. r = √ 2π<br />

2π √ 2<br />

2π<br />

1<br />

θ, 0 ≤ θ ≤ 2π. A =<br />

2 r2 1<br />

dθ =<br />

2 θ dθ =<br />

1<br />

θdθ= 1<br />

θ2 2π<br />

= π 2<br />

2 4 0<br />

0<br />

0<br />

0<br />

7. r =4+3sinθ, − π ≤ θ ≤ π .<br />

2 2<br />

π/2<br />

1<br />

A = ((4 + 3 sin 2 θ)2 dθ = 1 2<br />

−π/2<br />

= 1 2 · 2 π/2<br />

=<br />

π/2<br />

0<br />

0<br />

π/2<br />

−π/2<br />

(16 + 24 sin θ +9sin 2 θ) dθ = 1 2<br />

<br />

16 + 9 · 1<br />

2 (1 − cos 2θ) dθ [by Theorem 5.5.7(a)]<br />

π/2<br />

−π/2<br />

41<br />

− 9 cos 2θ dθ = 41<br />

θ − 9 sin 2θ π/2<br />

= 41π<br />

− 0 − (0 − 0) = 41π<br />

2 2 2 4 0 4 4<br />

9. The area above the polar axis is bounded by r =3cosθ for θ =0<br />

to θ = π/2 [not π]. By symmetry,<br />

A =2 π/2<br />

0<br />

=9 π/2<br />

0<br />

1<br />

2 r2 dθ = π/2<br />

(3 cos θ) 2 dθ =3 2 π/2<br />

0<br />

1<br />

2 (1 + cos 2θ) dθ = 9 2<br />

cos 2 θdθ<br />

0<br />

<br />

θ +<br />

1<br />

sin 2θ π/2 <br />

= 9 π +0 − (0 + 0) = 9π 2 0 2 2 4<br />

Also, note that this is a circle with radius 3 2 ,soitsareaisπ 3<br />

2<br />

2<br />

= 9π 4 .<br />

11. The curve goes through the pole when θ = π/4,sowe’llfindtheareafor<br />

0 ≤ θ ≤ π/4 and multiply it by 4.<br />

A =4 π/4<br />

0<br />

1<br />

2 r2 dθ =2 π/4<br />

(4 cos 2θ) dθ<br />

0<br />

=8 π/4<br />

0<br />

cos 2θdθ=4 sin 2θ π/4<br />

0<br />

=4<br />

(16 + 9 sin 2 θ) dθ [by Theorem 5.5.7(b)]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!