30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

428 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES TX.10<br />

63. r =3cosθ ⇒ x = r cos θ =3cosθ cos θ, y = r sin θ =3cosθ sin θ ⇒<br />

dy<br />

= dθ −3sin2 θ +3cos 2 θ =3cos2θ =0 ⇒ 2θ = π or 3π ⇔ θ = π or 3π .<br />

2 2 4 4<br />

<br />

3<br />

So the tangent is horizontal at √<br />

2<br />

, π and − √ 3 4<br />

2<br />

, 3π 3<br />

same as √<br />

4<br />

2<br />

, − π .<br />

4<br />

dx<br />

= −6sinθ cos θ = −3sin2θ =0 ⇒ 2θ =0or π ⇔ θ =0or π . So the tangent is vertical at (3, 0) and <br />

0, π dθ 2 2 .<br />

65. r =1+cosθ ⇒ x = r cos θ =cosθ (1 + cos θ), y = r sin θ =sinθ (1 + cos θ) ⇒<br />

dy<br />

=(1+cosθ) cosθ − dθ sin2 θ =2cos 2 θ +cosθ − 1=(2cosθ − 1)(cos θ +1)=0 ⇒ cos θ = 1 2<br />

or −1 ⇒<br />

θ = π , π,or 5π ⇒ horizontal tangent at 3<br />

, π<br />

3 3 2 3 , (0,π),and 3 , 5π<br />

2 3 .<br />

dx<br />

= −(1 + cos θ)sinθ − cos θ sin θ = − sin θ (1 + 2 cos θ) =0 ⇒ sin θ =0or cos θ = − 1<br />

dθ 2<br />

⇒<br />

θ =0, π, 2π ,or 4π ⇒ vertical tangent at (2, 0), 1<br />

, 2π<br />

3 3 2 3 ,and 1 , 4π<br />

2 3 .<br />

Note that the tangent is horizontal, not vertical when θ = π,since lim<br />

θ→π<br />

dy/dθ<br />

dx/dθ =0.<br />

67. r =2+sinθ ⇒ x = r cos θ =(2+sinθ) cosθ, y = r sin θ =(2+sinθ) sinθ ⇒<br />

dy<br />

dθ<br />

=(2+sinθ) cosθ +sinθ cos θ =cosθ · 2(1 + sin θ) =0 ⇒ cos θ =0or sin θ = −1 ⇒<br />

θ = π 2 or 3π 2<br />

⇒ horizontal tangent at 3, π 2<br />

dx<br />

<br />

and<br />

<br />

1,<br />

3π<br />

2<br />

=(2+sinθ)(− sin θ)+cosθ cos θ = −2sinθ − dθ sin2 θ +1− sin 2 θ = −2sin 2 θ − 2sinθ +1<br />

sin θ = 2 ± √ 4+8<br />

= 2 ± 2 √ 3<br />

= 1 − √ √ <br />

3 1+ 3<br />

< −1 ⇒<br />

−4 −4 −2 −2<br />

<br />

.<br />

⇒<br />

θ 1 =sin −1 − 1 + √ 1<br />

2 2 3 and θ2 = π − θ 1 ⇒ vertical tangent at 3<br />

+ √ 1 3,θ1<br />

2 2 and 3 + √ 1 3,θ2<br />

2 2 .<br />

Note that r(θ 1)=2+sin sin −1 − 1 + √ 1<br />

2 2 3 =2−<br />

1<br />

+ √ 1<br />

2 2 3=<br />

3<br />

+ √ 1<br />

2 2 3.<br />

69. r = a sin θ + b cos θ ⇒ r 2 = ar sin θ + br cos θ ⇒ x 2 + y 2 = ay + bx ⇒<br />

x 2 − bx + 1<br />

2 b2 + y 2 − ay + 1<br />

2 a2 = 1<br />

2 b2 + 1<br />

2 a 2<br />

with center 1<br />

2 b, 1 2 a and radius 1 2<br />

√<br />

a2 + b 2 .<br />

⇒<br />

x − 1 2 b2 + y − 1 2 a2 = 1 4 (a2 + b 2 ), and this is a circle<br />

Note for Exercises 71–76: Maple is able to plot polar curves using the polarplot command, or using the coords=polar option in a regular<br />

plot command. In Mathematica, use PolarPlot. In Derive, change to Polar under Options State. If your graphing device cannot<br />

plot polar equations, you must convert to parametric equations. For example, in Exercise 71, x = r cos θ =[1+2sin(θ/2)] cos θ,<br />

y = r sin θ =[1+2sin(θ/2)] sin θ.<br />

71. r =1+2sin(θ/2). The parameter interval is [0, 4π]. 73. r = e sin θ − 2cos(4θ). The parameter interval is [0, 2π].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!