30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

420 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES TX.10<br />

45. x = e t cos t, y = e t sin t, 0 ≤ t ≤ π.<br />

dx<br />

dt<br />

Thus, L = π<br />

0<br />

2 <br />

+<br />

dy<br />

2<br />

dt =[e t (cos t − sin t)] 2 +[e t (sin t +cost)] 2<br />

=(e t ) 2 (cos 2 t − 2cost sin t +sin 2 t)<br />

+(e t ) 2 (sin 2 t +2sint cos t +cos 2 t<br />

= e 2t (2 cos 2 t +2sin 2 t)=2e 2t<br />

√<br />

2e<br />

2t<br />

dt = π<br />

√<br />

0 2 e t dt = √ 2 e t π<br />

= √ 2(e π − 1).<br />

0<br />

47. x = e t − t, y =4e t/2 , −8 ≤ t ≤ 3<br />

dx<br />

dt<br />

2 + dy<br />

2<br />

dt =(e t − 1) 2 +(2e t/2 ) 2 = e 2t − 2e t +1+4e t<br />

= e 2t +2e t +1=(e t +1) 2<br />

L = 3<br />

<br />

(et +1)<br />

−8<br />

2 dt = 3<br />

−8 (et +1)dt = e t + t 3t<br />

−8<br />

=(e 3 +3)− (e −8 − 8) = e 3 − e −8 +11<br />

49. x = t − e t , y = t + e t , −6 ≤ t ≤ 6.<br />

dx<br />

2 <br />

dt + dy<br />

2<br />

dt =(1− e t ) 2 +(1+e t ) 2 =(1− 2e t + e 2t )+(1+2e t + e 2t )=2+2e 2t ,soL = 6<br />

√<br />

−6 2+2e<br />

2t<br />

dt.<br />

Set f(t) = √ 2+2e 2t . Then by Simpson’s Rule with n =6and ∆t = 6−(−6) =2,weget<br />

6<br />

L ≈ 2 [f(−6) + 4f(−4) + 2f(−2) + 4f(0) + 2f(2) + 4f(4) + f(6)] ≈ 612.3053.<br />

3<br />

51. x =sin 2 t, y =cos 2 t, 0 ≤ t ≤ 3π.<br />

(dx/dt) 2 +(dy/dt) 2 =(2sint cos t) 2 +(−2cost sin t) 2 =8sin 2 t cos 2 t =2sin 2 2t ⇒<br />

Distance = 3π<br />

√ √ π/2<br />

0 2 |sin 2t| dt =6 2 sin 2tdt [by symmetry] = −3 √ π/2<br />

2 cos 2t = −3 √ 2(−1 − 1) = 6 √ 2.<br />

0<br />

0<br />

The full curve is traversed as t goes from 0 to π 2<br />

, because the curve is the segment of x + y =1that lies in the first quadrant<br />

(since x, y ≥ 0), and this segment is completely traversed as t goes from 0 to π 2 . Thus, L = π/2<br />

0<br />

sin 2tdt= √ 2,asabove.<br />

53. x = a sin θ, y = b cos θ, 0 ≤ θ ≤ 2π.<br />

dx<br />

2 <br />

dt + dy<br />

2<br />

dt =(a cos θ) 2 +(−b sin θ) 2 = a 2 cos 2 θ + b 2 sin 2 θ = a 2 (1 − sin 2 θ)+b 2 sin 2 θ<br />

<br />

<br />

= a 2 − (a 2 − b 2 )sin 2 θ = a 2 − c 2 sin 2 θ = a 2 1 − c2<br />

a 2 sin2 θ = a 2 (1 − e 2 sin 2 θ)<br />

<br />

1 − e2 sin 2 θdθ.<br />

So L =4 <br />

π/2<br />

0<br />

a 2 1 − e 2 sin 2 θ dθ [by symmetry] =4a π/2<br />

0<br />

55. (a) x =11cost − 4cos(11t/2), y =11sint − 4sin(11t/2).<br />

Notice that 0 ≤ t ≤ 2π does not give the complete curve because<br />

x(0) 6=x(2π). In fact, we must take t ∈ [0, 4π] in order to obtain the<br />

complete curve, since the first term in each of the parametric equations has<br />

period 2π and the second has period 2π<br />

= 4π<br />

11/2 11<br />

integer multiple of these two numbers is 4π.<br />

, and the least common

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!