30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

PROBLEMS PLUS<br />

1. We use the Fundamental Theorem of Calculus to differentiate the given equation:<br />

[f(x)] 2 =100+ <br />

x<br />

[f(t)] 2 +[f 0 (t)] 2 dt ⇒ 2f(x)f 0 (x) =[f(x)] 2 +[f 0 (x)] 2 ⇒<br />

0<br />

[f(x)] 2 +[f 0 (x)] 2 − 2f(x)f 0 (x) =0 ⇒ [f(x) − f 0 (x)] 2 =0 ⇔ f(x) =f 0 (x).Wecansolvethisasaseparable<br />

equation, or else use Theorem 9.4.2 with k =1, which says that the solutions are f(x) =Ce x .Now[f(0)] 2 =100,so<br />

f(0) = C = ±10, and hence f(x) =±10e x are the only functions satisfying the given equation.<br />

3. f 0 f(x + h) − f(x) f(x)[f(h) − 1]<br />

(x) =lim<br />

=lim<br />

[since f(x + h) =f(x)f(h)]<br />

h→0 h<br />

h→0 h<br />

f(h) − 1<br />

f(h) − f(0)<br />

= f(x) lim = f(x) lim<br />

= f(x)f 0 (0) = f(x)<br />

h→0 h<br />

h→0 h − 0<br />

Therefore, f 0 (x) =f(x) for all x and from Theorem 9.4.2 we get f(x) =Ae x .Nowf(0) = 1 ⇒ A =1 ⇒<br />

f(x) =e x .<br />

5. “The area under the graph of f from 0 to x is proportional to the (n +1)st power of f(x)” translates to<br />

x<br />

0 f(t) dt = k[f(x)]n+1 for some constant k. ByFTC1,<br />

d<br />

dx<br />

x<br />

0<br />

f(t) dt = d <br />

k[f(x)]<br />

n+1<br />

dx<br />

f(x) =k(n +1)[f(x)] n f 0 (x) ⇒ 1=k(n +1)[f(x)] n−1 f 0 (x) ⇒ 1=k(n +1)y n−1 dy<br />

dx<br />

k(n +1)y n−1 dy = dx ⇒ k(n +1)y n−1 dy = dx ⇒ k(n +1) 1 n yn = x + C.<br />

Now f(0) = 0 ⇒ 0=0+C ⇒ C =0and then f(1) = 1 ⇒ k(n +1) 1 n =1 ⇒ k = n<br />

n +1 ,<br />

so y n = x and y = f(x) =x 1/n .<br />

⇒<br />

⇒<br />

7. Let y(t) denote the temperature of the peach pie t minutes after 5:00 PM and R the temperature of the room. Newton’s Law of<br />

Cooling gives us dy/dt = k(y − R). Solving for y we get<br />

dy<br />

= kdt ⇒ ln|y − R| = kt + C ⇒<br />

y − R<br />

|y − R| = e kt+C ⇒ y − R = ±e kt · e C ⇒ y = Me kt + R, whereM is a nonzero constant. We are given<br />

temperatures at three times.<br />

Substituting 100 − M for R in (1) and (2) gives us<br />

y(0) = 100 ⇒ 100 = M + R ⇒ R =100− M<br />

y(10) = 80 ⇒ 80 = Me 10k + R (1)<br />

y(20) = 65 ⇒ 65 = Me 20k + R (2)<br />

Dividing (3) by (4) gives us −20<br />

−35 = M e 10k − 1 <br />

M(e 20k − 1)<br />

−20 = Me 10k − M (3) and −35 = Me 20k − M (4)<br />

⇒ 4 7 = e10k − 1<br />

e 20k − 1<br />

⇒ 4e 20k − 4=7e 10k − 7 ⇒<br />

407

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!