30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

404 ¤ CHAPTER 9 DIFFERENTIAL EQUATIONS<br />

TX.10<br />

15. (a) Using (4) and (7) in Section 9.4, we see that for dP <br />

dt =0.1P 1 − P <br />

with P (0) = 100, wehavek =0.1,<br />

2000<br />

K =2000, P 0 =100,andA =<br />

P (t) =<br />

2000 − 100<br />

100<br />

2000<br />

2000<br />

and P (20) = ≈ 560.<br />

1+19e−0.1t 1+19e−2 2000<br />

(b) P = 1200 ⇔ 1200 =<br />

⇔ 1+19e −0.1t = 2000<br />

1+19e −0.1t 1200<br />

e −0.1t = <br />

2<br />

3 /19 ⇔ −0.1t =ln<br />

2<br />

⇔ t = −10 ln 2 ≈ 33.5.<br />

57 57<br />

<br />

17. (a) dL<br />

dt ∝ L ∞ − L ⇒ dL<br />

dt = k(L ∞ − L)<br />

⇒<br />

=19. Thus, the solution of the initial-value problem is<br />

<br />

dL<br />

L ∞ − L =<br />

⇔ 19e −0.1t = 5 3 − 1 ⇔<br />

kdt ⇒ −ln |L ∞ − L| = kt + C ⇒<br />

ln |L ∞ − L| = −kt − C ⇒ |L ∞ − L| = e −kt−C ⇒ L ∞ − L = Ae −kt ⇒ L = L ∞ − Ae −kt .<br />

At t =0, L = L(0) = L ∞ − A ⇒ A = L ∞ − L(0) ⇒ L(t) =L ∞ − [L ∞ − L(0)]e −kt .<br />

(b) L ∞ =53cm, L(0) = 10 cm, and k =0.2 ⇒ L(t) =53− (53 − 10)e −0.2t =53− 43e −0.2t .<br />

19. Let P represent the population and I the number of infected people. The rate of spread dI/dt is jointly proportional to I and<br />

to P − I, so for some constant k, dI<br />

1<br />

dt = kI(P − I) =(kP)I − I <br />

. From Equation 9.4.7 with K = P and k replaced by<br />

P<br />

21.<br />

kP,wehaveI(t) =<br />

P<br />

1+Ae = I 0 P<br />

−kP t I 0 +(P − I 0 )e . −kP t<br />

Now, measuring t in days, we substitute t =7, P = 5000, I 0 = 160 and I(7) = 1200 to find k:<br />

1200 =<br />

e −35,000k =<br />

160 · 5000<br />

2000<br />

⇔ 3=<br />

⇔ 480 + 14,520e −35,000k =2000 ⇔<br />

160 + (5000 − 160)e −5000·7·k 160 + 4840e −35,000k<br />

2000 − 480<br />

14,520<br />

⇔ −35,000k =ln 38<br />

363<br />

I =5000× 80% = 4000,andsolvefort: 4000 =<br />

160 + 4840e −5000kt =200 ⇔ e −5000kt =<br />

t =<br />

−1<br />

5000k ln 1<br />

121 = 1<br />

1<br />

to be infected.<br />

dh<br />

dt = − R h<br />

V k + h<br />

38<br />

ln<br />

7 363<br />

⇒<br />

· ln 1<br />

121<br />

k + h<br />

h<br />

=7· ln 121<br />

ln 363<br />

38<br />

dh =<br />

⇔ k = −1 38<br />

ln ≈ 0.00006448. Next, let<br />

35,000 363<br />

160 · 5000<br />

200<br />

⇔ 1=<br />

⇔<br />

160 + (5000 − 160)e −k·5000·t 160 + 4840e −5000kt<br />

200 − 160<br />

4840<br />

<br />

− R <br />

dt<br />

V<br />

⇔ −5000kt =ln 1<br />

121<br />

≈ 14.875. So it takes about 15 days for 80% of the population<br />

⇒<br />

<br />

1+ k <br />

dh = − R h V<br />

⇔<br />

<br />

1 dt ⇒<br />

h + k ln h = − R V<br />

t + C. This equation gives a relationship between h and t, but it is not possible to isolate h and express it in<br />

terms of t.<br />

23. (a) dx/dt =0.4x(1 − 0.000005x) − 0.002xy, dy/dt = −0.2y +0.000008xy. Ify =0,then<br />

dx/dt =0.4x(1 − 0.000005x),sodx/dt =0 ⇔ x =0or x = 200,000, which shows that the insect population<br />

increases logistically with a carrying capacity of 200,000. Sincedx/dt > 0 for 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!