30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

398 ¤ CHAPTER 9 DIFFERENTIAL EQUATIONS<br />

TX.10<br />

23. Setting u = y 1−n , du<br />

dx =(1− n) dy dy<br />

y−n or<br />

dx dx =<br />

becomes un/(1−n)<br />

1 − n<br />

yn du<br />

1 − n dx = un/(1−n)<br />

1 − n<br />

du<br />

. Then the Bernoulli differential equation<br />

dx<br />

du<br />

dx + P (x)u1/(1−n) = Q(x)u n/(1−n) or du +(1− n)P (x)u = Q(x)(1 − n).<br />

dx<br />

25. Here y 0 + 2 x y = y3<br />

x ,son =3, P (x) = 2 2 x and Q(x) = 1 x .Settingu = 2 y−2 , u satisfies u 0 − 4u x = − 2 x . 2<br />

<br />

Then I(x) =e (−4/x) dx = x −4 and u = x 4 − 2 2<br />

x dx + C = x 4 6 5x + C = Cx 4 + 2<br />

5 5x .<br />

<br />

Thus, y = ± Cx 4 + 2 −1/2<br />

.<br />

5x<br />

27. (a) 2 dI<br />

dI<br />

+10I =40or<br />

dt dt +5I =20. Then the integrating factor is e 5 dt = e 5t . Multiplying the differential equation<br />

by the integrating factor gives e 5t dI<br />

dt +5Ie5t =20e 5t ⇒ (e 5t I) 0 =20e 5t ⇒<br />

I(t) =e −5t 20e 5t dt + C =4+Ce −5t .But0=I(0) = 4 + C,soI(t) =4− 4e −5t .<br />

(b) I(0.1) = 4 − 4e −0.5 ≈ 1.57 A<br />

29. 5 dQ<br />

dt +20Q =60with Q(0) = 0 C. Then the integrating factor is e 4 dt = e 4t , and multiplying the differential<br />

31.<br />

equation by the integrating factor gives e 4t dQ<br />

dt +4e4t Q =12e 4t ⇒ (e 4t Q) 0 =12e 4t ⇒<br />

Q(t) =e −4t 12e 4t dt + C =3+Ce −4t .But0=Q(0) = 3 + C so Q(t) =3(1− e −4t ) isthechargeattimet<br />

and I = dQ/dt =12e −4t is the current at time t.<br />

dP<br />

dt + kP = kM,soI(t) =e kdt = e kt . Multiplying the differential equation<br />

by I(t) gives e kt dP<br />

dt + kPekt = kMe kt ⇒ (e kt P ) 0 = kMe kt ⇒<br />

P (t) =e −kt kMe kt dt + C = M + Ce −kt , k>0. Furthermore,itis<br />

reasonable to assume that 0 ≤ P (0) ≤ M,so−M ≤ C ≤ 0.<br />

<br />

33. y(0) = 0 kg. Salt is added at a rate of 0.4 kg <br />

5 L <br />

=2 kg . Since solution is drained from the tank at a rate of<br />

L min min<br />

3 L/min,butsaltsolutionisaddedatarateof5 L/min, the tank, which starts out with 100 L of water, contains (100 + 2t) L<br />

of liquid after t min. Thus, the salt concentration at time t is<br />

<br />

y(t)<br />

100 + 2t<br />

<br />

kg<br />

3 L <br />

=<br />

L min<br />

3y<br />

100 + 2t<br />

y(t)<br />

100 + 2t<br />

kg<br />

. Salt therefore leaves the tank at a rate of<br />

L<br />

kg<br />

. Combining the rates at which salt enters and leaves the tank, we get<br />

min

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!