30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 9.3 SEPARABLE EQUATIONS ¤ 391<br />

43. Let y(t) be the amount of alcohol in the vat after t minutes. Then y(0) = 0.04(500) = 20 gal. The amount of beer in the vat<br />

is 500 gallons at all times, so the percentage at time t (in minutes) is y(t)/500 × 100, and the change in the amount of alcohol<br />

with respect to time t is dy<br />

<br />

dt = rate in − rate out =0.06 5 gal <br />

− y(t) <br />

5 gal <br />

=0.3 − y<br />

min 500 min 100 = 30 − y gal<br />

100 min .<br />

<br />

Hence,<br />

<br />

dy dt<br />

30 − y = 1<br />

and − ln |30 − y| =<br />

100<br />

t + C. Because y(0) = 20, wehave− ln 10 = C, so<br />

100<br />

− ln |30 − y| = 1<br />

100 t − ln 10 ⇒ ln |30 − y| = −t/100 + ln 10 ⇒ ln |30 − y| =lne−t/100 +ln10 ⇒<br />

ln |30 − y| =ln(10e −t/100 ) ⇒ |30 − y| =10e −t/100 .Sincey is continuous, y(0) = 20, and the right-hand side is<br />

never zero, we deduce that 30 − y is always positive. Thus, 30 − y =10e −t/100 ⇒ y =30− 10e −t/100 .The<br />

percentage of alcohol is p(t) =y(t)/500 × 100 = y(t)/5 =6− 2e −t/100 . The percentage of alcohol after one hour is<br />

p(60) = 6 − 2e −60/100 ≈ 4.9.<br />

45. Assume that the raindrop begins at rest, so that v(0) = 0. dm/dt = km and (mv) 0 = gm ⇒ mv 0 + vm 0 = gm ⇒<br />

mv 0 + v(km) =gm ⇒ v 0 + vk = g ⇒ dv<br />

<br />

<br />

dt = g − kv ⇒ dv<br />

g − kv = dt ⇒<br />

− (1/k)ln|g − kv| = t + C ⇒ ln |g − kv| = −kt − kC ⇒ g − kv = Ae −kt . v(0) = 0 ⇒ A = g.<br />

So kv = g − ge −kt ⇒ v =(g/k)(1 − e −kt ).Sincek>0,ast →∞, e −kt → 0 and therefore, lim<br />

t→∞<br />

v(t) =g/k.<br />

47. (a) The rate of growth of the area is jointly proportional to A(t) and M − A(t); that is, the rate is proportional to the<br />

product of those two quantities. So for some constant k, dA/dt = k √ A (M − A). We are interested in the maximum of<br />

the function dA/dt (when the tissue grows the fastest), so we differentiate, using the Chain Rule and then substituting for<br />

dA/dt from the differential equation:<br />

<br />

d dA √A dA<br />

= k (−1) 1 dA<br />

+(M − A) ·<br />

2<br />

dt dt<br />

dt A−1/2 = 1 dA<br />

2<br />

dt<br />

kA−1/2 [−2A +(M − A)]<br />

dt<br />

=<br />

k √ <br />

1<br />

2 kA−1/2 A(M − A) [M − 3A] = 1 2 k2 (M − A)(M − 3A)<br />

This is 0 when M − A =0[this situation never actually occurs, since the graph of A(t) is asymptotic to the line y = M,<br />

as in the logistic model] and when M − 3A =0 ⇔ A(t) =M/3. This represents a maximum by the First Derivative<br />

Test, since d dA<br />

goes from positive to negative when A(t) =M/3.<br />

dt dt<br />

<br />

Ce √ 2 Mkt − 1<br />

(b) From the CAS, we get A(t) =M<br />

Ce √ .TogetC in terms of the initial area A 0 and the maximum area M,<br />

Mkt<br />

+1<br />

we substitute t =0and A = A 0 = A(0): A 0 = M<br />

2 C − 1<br />

⇔ (C +1) √ A 0 =(C − 1) √ M ⇔<br />

C +1<br />

C √ A 0 + √ A 0 = C √ M − √ M ⇔ √ M + √ A 0 = C √ M − C √ A 0 ⇔<br />

√ √ √M √ <br />

√ √ M + A0<br />

M + A0 = C<br />

− A0 ⇔ C = √ √ . [Notice that if A 0 =0,thenC =1.]<br />

M − A0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!