30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

386 ¤ CHAPTER 9 DIFFERENTIAL EQUATIONS<br />

TX.10<br />

(c) The exact value of y(1) is 2+e −13 =2+e −1 .<br />

(i) For h =1: (exact value) − (approximate value) =2+e −1 − 3 ≈−0.6321<br />

(ii) For h =0.1: (exact value) − (approximate value) =2+e −1 − 2.3928 ≈−0.0249<br />

(iii) For h =0.01: (exact value) − (approximate value) =2+e −1 − 2.3701 ≈−0.0022<br />

(iv) For h =0.001: (exact value) − (approximate value) =2+e −1 − 2.3681 ≈−0.0002<br />

In (ii)–(iv), it seems that when the step size is divided by 10, the error estimate is also divided by 10 (approximately).<br />

27. (a) R dQ<br />

dt + 1 C Q = E(t) becomes 5Q0 + 1<br />

0.05 Q =60<br />

or Q 0 +4Q =12.<br />

(b) From the graph, it appears that the limiting value of the<br />

charge Q is about 3.<br />

(c) If Q 0 =0,then4Q =12 ⇒ Q =3is an<br />

equilibrium solution.<br />

(d)<br />

(e) Q 0 +4Q =12 ⇒ Q 0 =12− 4Q. NowQ(0) = 0,sot 0 =0and Q 0 =0.<br />

Q 1 = Q 0 + hF (t 0 ,Q 0 )=0+0.1(12 − 4 · 0) = 1.2<br />

Q 2 = Q 1 + hF (t 1,Q 1)=1.2+0.1(12 − 4 · 1.2) = 1.92<br />

Q 3 = Q 2 + hF (t 2 ,Q 2 )=1.92 + 0.1(12 − 4 · 1.92) = 2.352<br />

Q 4 = Q 3 + hF (t 3 ,Q 3 )=2.352 + 0.1(12 − 4 · 2.352) = 2.6112<br />

Q 5 = Q 4 + hF (t 4,Q 4)=2.6112 + 0.1(12 − 4 · 2.6112) = 2.76672<br />

Thus, Q 5 = Q(0.5) ≈ 2.77 C.<br />

9.3 Separable Equations<br />

1.<br />

dy<br />

dx = y x ⇒ dy<br />

y = dx dy dx<br />

x [y 6= 0] ⇒ y<br />

= x<br />

⇒ ln |y| =ln|x| + C ⇒<br />

|y| = e ln|x|+C = e ln|x| e C = e C |x| ⇒ y = Kx,whereK = ±e C is a constant. (In our derivation, K was nonzero,<br />

but we can restore the excluded case y =0by allowing K to be zero.)<br />

3. (x 2 +1)y 0 = xy ⇒ dy<br />

dx = xy<br />

x 2 +1<br />

⇒<br />

dy<br />

y = xdx<br />

x 2 +1<br />

[y 6= 0] ⇒<br />

dy<br />

y = <br />

xdx<br />

x 2 +1<br />

ln |y| = 1 2 ln(x2 +1)+C [u = x 2 +1, du =2xdx] =ln(x 2 +1) 1/2 +lne C =ln e C√ x 2 +1 ⇒<br />

|y| = e C√ x 2 +1 ⇒ y = K √ x 2 +1,whereK = ±e C is a constant. (In our derivation, K was nonzero, but we can<br />

restore the excluded case y =0by allowing K to be zero.)<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!