30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

17. P (μ − 2σ ≤ X ≤ μ +2σ) =<br />

2<br />

−2<br />

μ+2σ<br />

μ−2σ<br />

1<br />

σ √ 2π e− t2 /2 (σdt)= 1 √<br />

2π<br />

2<br />

−2<br />

TX.10<br />

SECTION 8.5 PROBABILITY ¤ 373<br />

<br />

1<br />

σ √ 2π exp (x − μ)2<br />

− dx. Substituting t = x − μ and dt = 1 dx gives us<br />

2σ 2<br />

σ<br />

σ<br />

e − t2 /2 dt ≈ 0.9545.<br />

19. (a) First p(r) = 4 a 3 0<br />

r 2 e −2r/a 0<br />

≥ 0 for r ≥ 0. Next,<br />

∞<br />

−∞<br />

∞<br />

p(r) dr =<br />

0<br />

4<br />

a 3 0<br />

r 2 e −2r/a 0<br />

dr = 4 a 3 0<br />

lim<br />

t→∞<br />

By using parts, tables, or a CAS , we find that x 2 e bx dx =(e bx /b 3 )(b 2 x 2 − 2bx +2).<br />

Next, we use ()(withb = −2/a 0 ) and l’Hospital’s Rule to get<br />

a function to be a probability density function.<br />

(b) Using l’Hospital’s Rule,<br />

4<br />

a 3 0<br />

lim<br />

r→∞<br />

r 2<br />

e 2r/a 0 = 4 a 3 0<br />

To find the maximum of p, we differentiate:<br />

p 0 (r) = 4 a 3 0<br />

lim<br />

r→∞<br />

2r<br />

4<br />

a 3 0<br />

(2/a 0 )e 2r/a 0 = 2 a 2 0<br />

t<br />

0<br />

r 2 e −2r/a 0<br />

dr<br />

()<br />

a<br />

3<br />

0<br />

−8 (−2) <br />

=1.Thissatisfies the second condition for<br />

lim<br />

r→∞<br />

2<br />

(2/a 0 )e 2r/a 0 =0.<br />

<br />

r 2 e −2r/a 0<br />

− 2 <br />

<br />

+ e −2r/a 0<br />

(2r) = 4 <br />

e −2r/a 0<br />

(2r) − r <br />

+1<br />

a 0 a 3 0 a 0<br />

p 0 (r) =0 ⇔ r =0or 1= r a 0<br />

⇔ r = a 0 [a 0 ≈ 5.59 × 10 −11 m].<br />

p 0 (r) changes from positive to negative at r = a 0 ,sop(r) has its maximum value at r = a 0 .<br />

(c) It is fairly difficult to find a viewing rectangle, but knowing the maximum<br />

value from part (b) helps.<br />

p(a 0 )= 4 a 2<br />

a<br />

0e −2a 0/a 0<br />

= 4 e −2 ≈ 9,684,098,979<br />

3<br />

0<br />

a 0<br />

With a maximum of nearly 10 billion and a total area under the curve of 1,<br />

we know that the “hump” in the graph must be extremely narrow.<br />

r<br />

(d) P (r) =<br />

0<br />

4<br />

a 3 0<br />

P (4a 0 )= 4 a 3 0<br />

∞<br />

4a0<br />

s 2 e −2s/a 0<br />

ds ⇒ P (4a 0)=<br />

0<br />

e<br />

−2s/a 0<br />

−8/a 3 0<br />

=1− 41e −8 ≈ 0.986<br />

4<br />

s 2 e −2s/a 0<br />

ds. Using() from part (a) [with b = −2/a 0],<br />

a 3 0<br />

4<br />

s 2 + 4 4a0<br />

s +2 = 4 a<br />

3<br />

0<br />

[e −8 (64 + 16 + 2) − 1(2)] = − 1<br />

a 2 0 a 0 0<br />

a 3 0 −8<br />

2 (82e−8 − 2)<br />

t<br />

lim<br />

t→∞<br />

0<br />

(e) μ = rp(r) dr = 4 r 3 e −2r/a 0<br />

dr. Integrating by parts three times or using a CAS, we find that<br />

−∞ a 3 0<br />

<br />

x 3 e bx dx = ebx <br />

b 3 x 3 − 3b 2 x 2 +6bx − 6 .Sowithb = − 2 , we use l’Hospital’s Rule, and get<br />

b 4 a 0<br />

μ = 4 <br />

− a4 0<br />

a 3 0 16 (−6) = 3 a 2 0.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!