30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

362 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION<br />

TX.10<br />

(b) x2<br />

a + y2<br />

x (dx/dy)<br />

=1 ⇒ = − y ⇒ dx<br />

2 b2 a 2 b 2 dy = y<br />

−a2 b 2 x<br />

⇒<br />

2 dx<br />

1+ =1+ a4 y 2<br />

dy b 4 x = b4 x 2 + a 4 y 2<br />

= b4 a 2 (1 − y 2 /b 2 )+a 4 y 2<br />

2 b 4 x 2 b 4 a 2 (1 − y 2 /b 2 )<br />

= b4 − b 2 y 2 + a 2 y 2<br />

= b4 − (b 2 − a 2 )y 2<br />

b 4 − b 2 y 2 b 2 (b 2 − y 2 )<br />

= a2 b 4 − a 2 b 2 y 2 + a 4 y 2<br />

a 2 b 4 − a 2 b 2 y 2<br />

The oblate spheroid’s surface area is twice the area generated by rotating the first-quadrant portion of the ellipse about the<br />

y-axis. Thus,<br />

S =2<br />

b<br />

0<br />

= 4πa<br />

b 2<br />

30<br />

=<br />

=<br />

2πx<br />

b<br />

0<br />

<br />

1+<br />

2 dx<br />

b<br />

dy =4π<br />

dy<br />

0<br />

<br />

b4 − (b 2 − a 2 )y 2 dy = 4πa<br />

b 2<br />

<br />

a b4 − (b<br />

b2 − y 2 − a 2 )y 2<br />

b<br />

2 b dy<br />

b 2 − y 2<br />

b<br />

√<br />

b 2 −a 2<br />

<br />

4πa u<br />

b √ √ <br />

b4 − u 2 b 2 − a 2 2<br />

2 + b4 u<br />

b<br />

2 sin−1 b 2<br />

0<br />

0<br />

√<br />

<br />

b4 − u 2<br />

b 2 −a 2<br />

√ √ <br />

4πa b<br />

b √ b2 − a 2 <br />

b4 − b 2 b 2 − a 2 2<br />

2 (b 2 − a 2 )+ b4 b2 − a 2<br />

2 sin−1 b<br />

du<br />

√<br />

u<br />

b2 − a 2 = √ <br />

b 2 − a 2 y<br />

⎡<br />

=2π⎢<br />

⎣ a2 +<br />

Notice that this result can be obtained from the answer in part (a) by interchanging a and b.<br />

31. The analogue of f(x ∗ i ) in the derivation of (4) is now c − f(x ∗ i ), so<br />

S = lim<br />

n<br />

n→∞ i=1<br />

2π[c − f(x ∗ i )] 1+[f 0 (x ∗ i )]2 ∆x = b<br />

a 2π[c − f(x)] 1+[f 0 (x)] 2 dx.<br />

33. For the upper semicircle, f(x) = √ r 2 − x 2 , f 0 (x) =−x/ √ r 2 − x 2 . The surface area generated is<br />

S 1 =<br />

r<br />

=4π<br />

−r<br />

r<br />

2π<br />

r − <br />

r 2 − x 2 1+ x2<br />

0<br />

<br />

<br />

r 2<br />

√<br />

r2 − x − r dx<br />

2<br />

For the lower semicircle, f(x) =− √ r 2 − x 2 and f 0 (x) =<br />

Thus, the total area is S = S 1 + S 2 =8π<br />

r<br />

0<br />

r r<br />

r 2 − x dx =4π − <br />

r 2 − x 2 2<br />

x<br />

√<br />

r2 − x 2 ,soS 2 =4π<br />

<br />

r 2<br />

<br />

√ dx =8π<br />

r2 − x 2<br />

0<br />

r<br />

0<br />

r 2 sin −1 x<br />

r<br />

r<br />

0<br />

ab 2 sin −1 √<br />

b2 − a 2<br />

b √<br />

b2 − a 2<br />

r<br />

√<br />

r2 − x 2 dx<br />

<br />

<br />

r 2<br />

√<br />

r2 − x + r dx.<br />

2<br />

=8πr 2 π<br />

<br />

=4π 2 r 2 .<br />

2<br />

yi−1 + yi<br />

35. In the derivation of (4), we computed a typical contribution to the surface area to be 2π |P i−1P i|,<br />

2<br />

the area of a frustum of a cone. When f(x) is not necessarily positive, the approximations y i = f(x i ) ≈ f(x ∗ i ) and<br />

y i−1 = f(x i−1 ) ≈ f(x ∗ i ) must be replaced by y i = |f(x i )| ≈ |f(x ∗ i )| and y i−1 = |f(x i−1 )| ≈ |f(x ∗ i )|. Thus,<br />

2π y i−1 + y i<br />

2<br />

|P i−1 P i | ≈ 2π |f(x ∗ i )| 1+[f 0 (x ∗ i )]2 ∆x. Continuing with the rest of the derivation as before,<br />

we obtain S = b<br />

a 2π |f(x)| 1+[f 0 (x)] 2 dx.<br />

⎤<br />

⎥<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!