30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

360 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION<br />

TX.10<br />

15. x = a 2 − y 2 ⇒ dx/dy = 1 2 (a2 − y 2 ) −1/2 (−2y) =−y/ a 2 − y 2 ⇒<br />

1+<br />

S =<br />

2 dx<br />

=1+<br />

dy<br />

a/2<br />

0<br />

y2<br />

a 2 − y = a2 − y 2<br />

2 a 2 − y + 2<br />

y2<br />

a 2 − y 2 =<br />

2π <br />

a<br />

a/2<br />

a 2 − y 2 <br />

a2 − y dy =2π 2<br />

0<br />

a2<br />

a 2 − y 2<br />

⇒<br />

ady =2πa y a/2<br />

0<br />

a<br />

<br />

=2πa<br />

2 − 0 = πa 2 .<br />

Note that this is 1 the surface area of a sphere of radius a, and the length of the interval y =0to y = a/2 is 1 the length of the<br />

4 4<br />

interval y = −a to y = a.<br />

17. y =lnx ⇒ dy/dx =1/x ⇒ 1+(dy/dx) 2 =1+1/x 2 ⇒ S = 3<br />

1 2π ln x 1+1/x 2 dx.<br />

Let f(x) =lnx 1+1/x 2 .Sincen =10, ∆x = 3 − 1<br />

10<br />

= 1 5 . Then<br />

S ≈ S 10 =2π · 1/5<br />

3<br />

[f(1) + 4f(1.2) + 2f(1.4) + ···+2f(2.6) + 4f(2.8) + f(3)] ≈ 9.023754.<br />

The value of the integral produced by a calculator is 9.024262 (to six decimal places).<br />

19. y =secx ⇒ dy/dx =secx tan x ⇒ 1+(dy/dx) 2 =1+sec 2 x tan 2 x ⇒<br />

S = π/3<br />

2π sec x √ 1+sec<br />

0 2 x tan 2 xdx.Letf(x) =secx √ 1+sec 2 x tan 2 x.Sincen =10, ∆x = π/3 − 0<br />

10<br />

Then S ≈ S 10 =2π · π/30 π<br />

f(0) + 4f +2f<br />

3<br />

30<br />

2π<br />

+ ···+2f<br />

30<br />

8π<br />

+4f<br />

30<br />

The value of the integral produced by a calculator is 13.516987 (to six decimal places).<br />

9π<br />

π<br />

+ f<br />

30 3<br />

≈ 13.527296.<br />

21. y =1/x ⇒ ds = 1+(dy/dx) 2 dx = 1+(−1/x 2 ) 2 dx = 1+1/x 4 dx ⇒<br />

2<br />

S = 2π · 1<br />

<br />

1+ 1 2<br />

√ <br />

1 x x dx =2π x4 +1<br />

4<br />

√<br />

u2 +1 dx =2π<br />

1 4 1 x 3 1 u du 2 [u = x 2 , du =2xdx]<br />

2<br />

4<br />

√ √<br />

1+u<br />

2<br />

= π<br />

du 24 1+u<br />

2<br />

= π − +ln<br />

u + 4<br />

1+u<br />

1 u 2<br />

u<br />

2 1<br />

<br />

= π − √ 17<br />

+ln 4+ √ 17 + √ 2<br />

− ln 1+ √ 2 = π √ √ √ √ <br />

4 1 4ln 17 + 4 − 4ln 2+1 − 17 + 4 2<br />

4<br />

23. y = x 3 and 0 ≤ y ≤ 1 ⇒ y 0 =3x 2 and 0 ≤ x ≤ 1.<br />

S = 1<br />

2πx 1+(3x<br />

0 2 ) 2 dx =2π <br />

3<br />

√<br />

0 1+u<br />

2 1<br />

du 6<br />

u =3x 2 ,<br />

du =6xdx<br />

<br />

= π 3<br />

3<br />

0<br />

√<br />

1+u2 du<br />

= π 30 .<br />

21<br />

<br />

= [or use CAS] π 1 u √ 1+u<br />

3 2 2 + 1 ln u + √ 1+u 2 2 3<br />

= π 3<br />

√<br />

0 3 2 10 +<br />

1<br />

ln 3+ √ 10 √ √ <br />

= π 2 6 3 10 + ln 3+ 10<br />

25. S =2π<br />

∞<br />

1<br />

1<br />

y<br />

<br />

1+<br />

2 dy<br />

∞<br />

<br />

1<br />

dx =2π 1+ 1 ∞<br />

√<br />

dx<br />

1 x x dx =2π x4 +1<br />

dx. Ratherthantryingto<br />

4 1 x 3<br />

evaluate this integral, note that √ x 4 +1> √ x 4 = x 2 for x>0. Thus, if the area is finite,<br />

∞<br />

√ <br />

x4 +1<br />

∞<br />

x 2 ∞<br />

S =2π<br />

dx > 2π<br />

x 3<br />

x dx =2π 1<br />

dx. But we know that this integral diverges, so the area S is<br />

3 x<br />

infinite.<br />

1<br />

1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!