30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

356 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION<br />

TX.10<br />

15. y =ln(1− x 2 ) ⇒ y 0 1<br />

=<br />

1 − x · (−2x) ⇒<br />

2<br />

2 dy<br />

4x 2<br />

1+ =1+<br />

dx (1 − x 2 ) = 1 − 2x2 + x 4 +4x 2<br />

= 1+2x2 + x 4<br />

= (1 + x2 ) 2<br />

⇒<br />

2 (1 − x 2 ) 2 (1 − x 2 ) 2 (1 − x 2 ) 2<br />

<br />

1+<br />

So L =<br />

<br />

<br />

2 dy 1+x<br />

2 2<br />

= = 1+x2<br />

dx 1 − x 2 1 − x = −1+ 2<br />

2 1 − x 2 [by division] = −1+ 1<br />

1+x + 1<br />

1 − x<br />

1/2<br />

0<br />

[partial fractions].<br />

<br />

−1+ 1<br />

1+x + 1 <br />

dx = −x +ln|1+x| − ln |1 − x| 1/2<br />

= − 1<br />

1 − x<br />

0 2 +ln3 − ln 1<br />

2 2 − 0=ln3−<br />

1<br />

. 2<br />

17. y = e x ⇒ y 0 = e x ⇒ 1+(y 0 ) 2 =1+e 2x .So<br />

L =<br />

1<br />

0<br />

e <br />

1+e<br />

2x<br />

dx = du 1+u<br />

2<br />

u<br />

√ 1+e 2<br />

v<br />

=<br />

√<br />

2 v 2 − 1 vdv<br />

1<br />

<br />

<br />

v = √ 1+u 2 ,so<br />

v 2 =1+u 2 , vdv= udu<br />

u = e x ,so<br />

x =lnu, dx = du/u<br />

<br />

√ 1+e 2<br />

=<br />

√<br />

2<br />

=<br />

e<br />

1<br />

√<br />

1+u<br />

2<br />

udu<br />

u 2<br />

<br />

1+ 1/2<br />

v − 1 − 1/2 <br />

dv<br />

v +1<br />

<br />

= v + 1 2 ln v − 1 √ 1+e 2<br />

= √ 1+e<br />

v +1<br />

2 + 1 √<br />

√<br />

2<br />

2 ln 1+e2 − 1<br />

√<br />

1+e2 +1 − √ 2 − 1 √<br />

2 − 1<br />

2 ln √<br />

2+1<br />

= √ 1+e 2 − √ 2+ln √ 1+e 2 − 1 − 1 − ln √ 2 − 1 <br />

Or: Use Formula 23 for √ 1+u 2 /u du, or substitute u =tanθ.<br />

19. y = 1 2 x2 ⇒ dy/dx = x ⇒ 1+(dy/dx) 2 =1+x 2 .So<br />

L = 1<br />

√<br />

1+x2 dx =2 1<br />

√<br />

1+x2 dx [by symmetry]<br />

−1<br />

0<br />

=2 √<br />

1<br />

2 2+<br />

1<br />

ln 1+ √ 2 − 0+ 1 ln 1 = √ 2+ln 1+ √ 2 <br />

2 2<br />

21 =2 √<br />

x 1+x2 + 1 ln x + √ 1+x 2<br />

2 2 1<br />

0<br />

<br />

or substitute<br />

x =tanθ<br />

<br />

21. From the figure, the length of the curve is slightly larger than the hypotenuse<br />

of the triangle formed by the points (1, 0), (3, 0),and(3,f(3)) ≈ (3, 15),<br />

where y = f(x) = 2 3 (x2 − 1) 3/2 . This length is about √ 15 2 +2 2 ≈ 15,so<br />

we might estimate the length to be 15.5.<br />

y = 2 3 (x2 − 1) 3/2 ⇒ y 0 =(x 2 − 1) 1/2 (2x) ⇒ 1+(y 0 ) 2 =1+4x 2 (x 2 − 1) = 4x 4 − 4x 2 +1=(2x 2 − 1) 2 ,<br />

so, using the fact that 2x 2 − 1 > 0 for 1 ≤ x ≤ 3,<br />

L = 3<br />

<br />

(2x2 − 1)<br />

1<br />

2 dx = 3<br />

<br />

2x 2 − 1 dx = 3<br />

1<br />

1 (2x2 − 1) dx = 2<br />

3 x3 − x 3<br />

=(18− 3) − 2<br />

− 1 = 46 =15.3.<br />

1 3 3<br />

23. y = xe −x ⇒ dy/dx = e −x − xe −x = e −x (1 − x) ⇒ 1+(dy/dx) 2 =1+e −2x (1 − x) 2 .Let<br />

f(x) = 1+(dy/dx) 2 = 1+e −2x (1 − x) 2 .ThenL = 5<br />

5 − 0<br />

f(x) dx. Sincen =10, ∆x = = 1 .Now<br />

0 10 2<br />

L ≈ S 10 = 1/2<br />

3 [f(0) + 4f 1<br />

2<br />

<br />

+2f(1) + 4f<br />

3<br />

2<br />

<br />

+2f(2) + 4f<br />

5<br />

2<br />

<br />

+2f(3) + 4f<br />

7<br />

2<br />

<br />

+2f(4) + 4f<br />

9<br />

2<br />

<br />

+ f(5)]<br />

≈ 5.115840<br />

The value of the integral produced by a calculator is 5.113568 (to six decimal places).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!