30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

352 ¤ CHAPTER 7 PROBLEMS PLUS<br />

TX.10<br />

7. Recall that cos A cos B = 1 2<br />

[cos(A + B)+cos(A − B)]. So<br />

f(x)= π<br />

cos t cos(x − t) dt = 1 π [cos(t + x − t)+cos(t − x + t)] dt = 1 π<br />

0 2 0 2 0<br />

<br />

= 1 2 t cos x +<br />

1<br />

sin(2t − x) π<br />

= π cos x + 1 sin(2π − x) − 1 sin(−x)<br />

2 0 2 4 4<br />

= π cos x + 1 sin(−x) − 1 sin(−x) = π cos x<br />

2 4 4 2<br />

The minimum of cos x on this domain is −1, so the minimum value of f(x) is f(π) =− π 2 .<br />

[cos x +cos(2t − x)] dt<br />

9. In accordance with the hint, we let I k = 1(1−x 2 )k<br />

0<br />

dx,andwefind an expression for I k+1 in terms of I k .WeintegrateI k+1<br />

by parts with u =(1− x 2 ) k+1 ⇒ du =(k +1)(1− x 2 ) k (−2x), dv = dx ⇒ v = x, and then split the remaining<br />

integral into identifiable quantities:<br />

I k+1 = x(1 − x 2 ) k+1 1 +2(k +1) 1<br />

0 0 x2 (1 − x 2 ) k dx =(2k +2) 1<br />

(1 − 0 x2 ) k [1 − (1 − x 2 )] dx<br />

=(2k +2)(I k − I k+1 )<br />

So I k+1 [1 + (2k +2)]=(2k +2)I k ⇒ I k+1 =<br />

2k +2<br />

2k +3 I k. Now to complete the proof, we use induction:<br />

I 0 =1= 20 (0!) 2<br />

, so the formula holds for n =0. Now suppose it holds for n = k. Then<br />

1!<br />

<br />

2k +2<br />

I k+1 =<br />

2k +3 I 2k +2 2 2k (k!) 2<br />

k = = 2(k +1)22k (k!) 2 2(k +1)<br />

=<br />

2k +3 (2k +1)! (2k +3)(2k +1)! 2k +2 · 2(k +1)22k (k!) 2<br />

(2k + 3)(2k +1)!<br />

=<br />

[2(k +1)] 2 2 2k (k!) 2<br />

(2k + 3)(2k +2)(2k +1)! = 22(k+1) [(k +1)!] 2<br />

[2(k +1)+1]!<br />

So by induction, the formula holds for all integers n ≥ 0.<br />

11. 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!