30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

342 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION<br />

TX.10<br />

(c) F (s) = ∞<br />

<br />

f(t)e −st n<br />

dt = lim<br />

0 n→∞ 0 te−st dt. Use integration by parts: let u = t, dv = e −st dt ⇒ du = dt,<br />

v = − e−st<br />

s<br />

.ThenF (s) = lim<br />

n→∞<br />

Therefore, F (s) = 1 and the domain of F is {s | s>0}.<br />

s2 <br />

− t s e−st − 1 n −n<br />

s 2 e−st = lim<br />

n→∞<br />

0<br />

se − 1<br />

sn s 2 e +0+ 1 <br />

= 1 only if s>0.<br />

sn s 2 s2 73. G(s) = ∞<br />

0<br />

f 0 (t)e −st dt. Integrate by parts with u = e −st , dv = f 0 (t) dt ⇒ du = −se −st , v = f(t):<br />

<br />

G(s) = lim<br />

f(t)e<br />

−st n<br />

+ s ∞<br />

f(t)e −st dt = lim<br />

n→∞<br />

0 0 n→∞ f(n)e−sn − f(0) + sF (s)<br />

But 0 ≤ f(t) ≤ Me at ⇒ 0 ≤ f(t)e −st ≤ Me at e −st and lim<br />

t→∞<br />

Me t(a−s) =0for s>a. So by the Squeeze Theorem,<br />

lim<br />

t→∞ f(t)e−st =0for s>a ⇒ G(s) =0− f(0) + sF (s) =sF (s) − f(0) for s>a.<br />

75. We use integration by parts: let u = x, dv = xe −x2 dx ⇒ du = dx, v = − 1 2 e−x2 .So<br />

∞<br />

0<br />

x 2 e −x2 dx = lim<br />

t→∞<br />

− 1 2 xe−x2 t<br />

0<br />

+ 1 2<br />

(The limit is 0 by l’Hospital’s Rule.)<br />

∞<br />

0<br />

<br />

e −x2 dx = lim −<br />

t <br />

+ 1<br />

t→∞ 2e t2 2<br />

77. For the firstpartoftheintegral,letx =2tanθ ⇒ dx =2sec 2 θdθ.<br />

<br />

<br />

1<br />

2sec 2 <br />

√<br />

x2 +4 dx = θ<br />

2secθ dθ = sec θdθ=ln|sec θ +tanθ|.<br />

∞<br />

0<br />

e −x2 dx = 1 2<br />

From the figure, tan θ = x √<br />

2 ,andsec θ = x2 +4<br />

.So<br />

2<br />

∞<br />

<br />

1<br />

I = √<br />

0 x2 +4 − C <br />

√ dx = lim ln<br />

x2 +4<br />

x +2<br />

t→∞ + x t 2 2 − C ln|x +2| 0<br />

√ <br />

t2 +4+t<br />

= lim ln<br />

− C ln(t +2)− (ln 1 − C ln 2)<br />

t→∞ 2<br />

t + √ t<br />

Now L = lim<br />

2 +4 H 1+t/ √ t<br />

= lim<br />

2 +4<br />

t→∞ (t +2) C t→∞ C (t +2) = 2<br />

C−1 C lim (t +2) . C−1<br />

t→∞<br />

If C1, L =0and I diverges to −∞.<br />

∞<br />

0<br />

e −x2 dx<br />

√ <br />

t2 +4+t<br />

= lim ln<br />

+ln2 C t + √ <br />

t<br />

=ln lim<br />

2 +4<br />

+ln2 C−1<br />

t→∞ 2(t +2) C t→∞ (t +2) C<br />

79. No, I = ∞<br />

0<br />

f(x) dx must be divergent. Since lim<br />

x→∞ f(x) =1,theremustexistanN such that if x ≥ N,thenf(x) ≥ 1 2 .<br />

Thus, I = I 1 + I 2 = N<br />

f(x) dx + ∞<br />

f(x) dx,whereI1 is an ordinary definite integral that has a finite value, and I2 is<br />

0 N<br />

improper and diverges by comparison with the divergent integral ∞<br />

N<br />

1<br />

2 dx.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!